
CM-5 Active Message Layer

NAME

CMAM - Introduction to the CM-5 Active Message communication layer.

DESCRIPTION

The CM-5 Active Message layer CMAM (<see-mam>) provides a set of communication primitives
intended to expose the communication capabilities of the hardware to the programmer and/or compiler
at a reasonably high level. A wide variety of programming models, ranging from send&receive mes-

sage passing to variants of shared memory, can be implemented efficiently on top of CMAM without
performance compromise. The basic communication primitive of CMAM is the Active Message: a mes-
sage where the first word points to the message handler. On reception of an Active Message, the mes-

sage handler is called with the remainder of the message as argument. The role of the message handler
is to integrate the message data into the computation, by storing it, accumulating it, or whatever makes
sense in the overlaying programming model. Its execution is atomic relative to other message handlers,

thus long message handlers tend to back-up the network. Note that while Active Messages might be
viewed as a restricted form of RPC (Remote Procedure Call), this is not the intent message handlers
should only integrate message data into the computation or, alternatively, reply to a simple request.
They should not perform arbitrary computational tasks.

The CMAM library provides primitives to send Active Messages to remote nodes, to transfer bulk data
to pre-arranged communication segments, and to synchronize processors using the CM-5 control net-
work. Functions to initialize and control the usage of hardware message tags within the CMAM library
allow it to co-exist with other message layers. Over all, the CMAM library should be viewed as a
"machine language for communication" and not as an end-user communication library.

Sending Active Messages

The most important communication primitive is CMAM(3) which sends an Active Message to a remote
node. It takes a pointer to a C function to call on the remote node and a buffer to pass as argument.

CMAM is built on top of CMAM_4(3) which calls a remote function with 4 32-bit words as argu-

ments. CMAM 4 sends exactly one CM-5 network packet and passes the arguments from registers on
the source node to registers on the destination node. In contrast, CMAM sends a header packet and one

packet per 12 bytes of buffer and requires allocation of a temporary buffer on the destination node.

Bulk data transfer

The bulk data transfer function CMAM_xfer(3) augments CMAM by providing efficient bulk data
transfer to pre-arranged communication segments. Before data transfer can occur, the recipient must
allocate a communications segment using CMAM open segment(3), specifying a base address, a byte
count and an end-of-transfer function. The sender (or multiple senders) can then transfer data to
memory relative to the base address. When count bytes have been transferred, the end-of-transfer func-

tion is called on the recipient node. CMAM_xfer transfers a contiguous byte buffer sending 16 bytes in
each CM-5 packet.

"Gather-transfer-scatter" can be implemented using CMAM_xfer_Ni(3) (N=1..4) which send a packet
with N 32-bit words of data to a segment-base + offset on the remote node. (The next version of
CMAM will provide more efficient gather-scatter through two functions, CMAM xfer ivec and
CMAM_xfer_dvec transfering 32-bit element vectors (32-bit elements) and 64-bit element vectors with
stride.)

Sending Indirect Active Messages

The function CMAM indirect 4(3) is nearly identical to CMAM 4 but performs an indirect function
call on the remote node: a pointer to a pointer to a function (i.e. (**fun)()) is transmitted in the mes-
sage. In some circumstances this allows one pointer to refer to both the function to be invoked and its
environment and thus crams more data into a CM-5 packet. The buffer version CMAM indirect is
provided for completeness, but does not provide a clear advantage over CMAM.

Polling the network

The current implementation of CMAM does not use interrupts on message arrival, thus, to receive mes-
sages, the network interface status register must be polled. All CMAM functions sending messages poll
the network so that a node sending messages will handle incoming ones. The most common situation

Last change: November 1992

cmam ( 3 ) cmam (3)

CMAM V2, U.C. Berkeley 1



CM-5 Active Message Layer

requiring explicit polling is when a node busy-waits for the reception of specific messages. For this
purpose, CMAMwait(3) waits (while polling) on a synchronization flag (a volatile int) to reach a

given value, resets the flag to zero and returns. Other wait mechanisms may be implemented using
CMAMpoll(3).

Sending and replying

All CMAM functions sending messages come in two variants to avoid deadlock in two-way communi-
cation. The send variant (CMAM, CMAM_4, CMAM_xfer, ...) sends messages on the "left" CM-5
data network and polls both the "left" and the "right" networks. The reply variant (CMAM_reply,
CMAM_reply4, CMAM_reply _xfer, ...) sends messages on the "right" network and only polls that
network. Messages sent from the computation proper should use the send variant whereas message
handlers wishing to send replies must use the reply variant. Reply-message handlers cannot send any
messages themselves. Failure to follow these rules may result in a stack overflow: a handler using the
send variant to reply and finding the outgoing network backed-up will accept messages from the net-
work to drain it, nesting the appropriate handlers on the stack. Given that these handlers may attempt
to send, the stack may grow arbitrarily. By using the reply variant, only messages on the reply network
need to be accepted and, given that their handlers may not reply themselves, the stack will not grow
arbitrarily.

Communicating with the host (control) processor

Individual processing nodes may send messages to the host ("control processor" in CM-5 terminology)

using special variants of all communication functions (e.g. CMAM_host(3), CMAM_host_4(3),
CMAMhostreply(3), CMAMhost_xfer(3), CMAM_host_reply_xfer(3), ...). The host can send to
any processing node using the normal functions.

The difficulty in communication with the host lies in the separate address spaces: addresses of message
handlers are different on the host than on the processing nodes. See CMAM_host(3) on possibilities to

deal with the situation.

Initialization

CMAM_enable(3) must be called on the control processor before using CMAM. It initializes data
structures on all nodes and sets-up default message tag usage. CMAM_disable(3) may be called on the
control processor at the end of the program to wait for all processing nodes to return to the idle loop.

Barrier synchronization
CMAM provides access to the "synchronous global OR" of the CM-5 control network in the form of a
fuzzy barrier. CMAM startbarrier(3) signals the arrival of a processing node at the barrier and
CMAM_end_barrier(3) blocks until all processing nodes have called CMAMstartbarrier.
CMAM_barrier(3) implements a traditional barrier. When starting the barrier, processing nodes may
enter a 1-bit value into the global OR computation which is returned at the end of the barrier. This

value is sometimes useful for termination detection. Note that CMAM_enable barrier(3) must be
called on the host before the barrier functions can be used on the nodes.

Mixing message layers

CMAM has been designed such that it can be mixed with other message layers. However, the only
other message layer available, CMMD, does not (yet?) co-operate. The node-to-node communication
primitives of CMAM and CMMD cannot be mixed (although a program could alternate phases of
CMAM use with phases of CMMD use). The global operations of CMMD which use the control net-
work may be used simultaneously with CMAM node-to-node operations (in particular, the integer scan
operations in CMMD are compatible with CMAM). However, the initialization of CMAM barrier opera-
tions interferes with CMMD global operations. Note that reportedly CMMD 3.0 will include Active
Messages.

CMAM can share the network interface with other message layers (or with user additions to CMAM)
by using different hardware message tags and by co-operating in the message tag-handler dispatch. The
function CMAMset tags(3) lets the user specify which hardware message tags CMAM should use.
Other message layers may use free tags provided that a handler is registered with CMAM using
CMAMset_handler(3) and CMAM_set_reply_handler(3).
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The CMAM header files assume the use of gcc(1) and contain ANSI-C function prototypes and gcc
inline definitions. Conversion to cc(1) is certainly possible, but not provided. All programs using
CMAM should (assuming U.C. Berkeley installation):

include #include <cmam/cmam.h>
be compiled with gcc-2.1 -I/usr/cm5/local/include ...
be linked with cmld -gld2 -L/usr/cmS/local/lib ... -pe -L/usr/cmS/local/lib
(The -gld2 option to cmld loads the library necessary for programs compiled with gcc-2.x.)

SEE ALSO
CMAM_enable(3), CMAM(3), CMAM_4(3), CMAM indirect(3),
CMAM_opensegment(3), CMAM_xfer(3), CMAM_xfer_N(3),
CMAMbarrier(3), CMAM_set tags(3), CMAM host(3),
CMAM_host_indirect(3), CMAMhost_indirect_4(3),
CMAMhost_xfer_N(3), CMAM_host_xfer_4i(3),

CMAMindirect_4(3),
CMAMxfer_4i(3),
CMAM_host_4(3),

CMAMhostxfer(3),

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser, Active Mes-
sages: a Mechanism for Integrated Communication and Computation. Proc. of the 19th Int'l Sympo-
sium on Computer Architecture, Gold Coast, Australia. May 1992. (Also available as Technical Report
UCB/CSD 92/675, CS Div., University of California at Berkeley.)

AUTHOR
Thorsten von Eicken, tve@CS.Berkeley.EDU
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NAME

CMAMenable, CMAMdisable - CMAM initialization

SYNOPSIS
#include <cmam/cmam.h>

void CMAM enable (void);

void CMAM disable (void);

DESCRIPTION
CMAM enable must be called on the host ("control processor" in CM-5 terminology) before any
other CMAM functions are used. It runs an initialization function on all processing nodes to set the
default packet tag assignments (see CMAM set tags(3)) and to initialize other CMAM data structures.

CMAM enable does not change the state of the network interface and therefore does not conflict with
other message layers. Note that the CMAM barrier functions (e.g. CMAMbarrier(3)) require
separate initialization (conflicting with CMMD global operations) performed by
CMAMenablebarrier(3).

CMAM disable runs an echo function on all processing nodes to ensure that they are all in the "idle
loop".

SEE ALSO
cmam(3), CMAM set tags(3), CMAM enable barrier(3), CMAM(3).

AUTHOR
Thorsten von Eicken, tve@CS.Berkeley.EDU

Last change: November 1992
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NAME
CMAM, CMAM_reply - Send Active Message

SYNOPSIS

#include <cmam/cmam.h>

typedef void CMAM_handler (void *buffer, int byte_count);

void CMAM (int node, CMAM handler *fun, void *buffer, int byte count);

void CMAM reply (int node, CMAM_handler *fun, void *buffer, int byte_count);

void CMAMset size (int maxbuffersize);

DESCRIPTION

CMAM sends an Active Message to the remote node, calling the handler fun and passing the buffer as
argument. The call

CMAM(node, foo, buf, buf len);

will allocate a buffer of size buf len bytes on the remote node, transfer the source buffer into the allo-
cated buffer packing 12 bytes per CM-5 network packet, invoke

foo(allocated_buffer, buf len)

and finally deallocate the buffer. Note that since the buffer is deallocated after the handler returns all
data must be copied to its final destination. Transferring large amounts of data is best performed using
CMAM xfer(3) which avoids the copy and packs more data into each CM-5 packet.

At initialization time a small number (typ. 16) of buffers of size CMAM SZ are pre-allocated for
CMAM. If needed, additional buffers are allocated using malloc(3). The current implementation lim-
its the message size to the size of the pre-allocated buffers. CMAMset size may be used to change
the size of the buffers used. CMAMsetsize must be called while no messages are partially received.

CMAM sends the Active Message on the left data network and polls both, the left and right networks.
CMAM_reply is identical to CMAM, but uses the right data network and polls only the right side.
CMAM_reply should be used within message handlers for replies to avoid the danger of stack overflow
(see cmam(3)). Neither CMAM nor CMAM reply may be used from within a reply-message handler.

CMAM may be used to send Active Messages from the host ("control processor" in CM-5 terminol-
ogy) to the processing nodes. However, note that the executable running on the host is different from
the one running on the processing nodes, therefore the address of functions differ. The linker cmld(l)
arranges for functions named CMPE_... or cmpe_... on the processing nodes to be resolved correctly on
the host. To send Active Messages to the host from processing nodes, see CMAM_host(3).

PERFORMANCE

CMAM is built on top of CMAM_4(3) and sends three 32-bit words of data per message.

SEE ALSO
cmam(3), CMAM_xfer(3), CMAM_host(3), CMAM_4(3).

AUTHOR

Thorsten von Eicken, tve@CS.Berkeley.EDU

Last change: November 1992
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NAME

CMAM_open segment, CMAM_open_this_segment, CMAM_shortensegment, CMAM_querysegment,
CMAMkill segment - Manipulate data transfer segments

SYNOPSIS
#include <cmam/cmam.h>

typedef int CMAM_end_xfer (void *info, void *base_address);

int CMAM_open segment (void *base_address, int byte count,
CMAM end xfer *end xfer fun, void *info);

int CMAM_open_this segment (int segment_num, void *base_address, int byte_count,
CMAM end xfer *end xfer fun, void *info);

void CMAM_shorten segment (int segment id, unsigned int delta_count);

void CMAM kill segment (int segment id);

int CMAM_query_segment (int segment id);

DESCRIPTION

CMAM segments are used in conjunction with CMAM_xfer(3) and its many variants to transfer bulk
data between nodes. A segment is opened by the recipient of the data using CMAM opensegment,
specifying a base address relative to which received data is stored and the number of bytes to be
received. CMAM_open segment returns a segment identifier for the highest free segment or -1 if no
segments are available (note that segment identifiers can be negative, thus check for "!= -1"). After
byte count bytes have been received, the end_xfer_fun is called with base-address and info as argu-
ments. The end_xfer_fun should return a new byte count or 0 if the segment is to be closed.

CMAM_open_thissegment is similar to CMAM open segment, but specifies which segment should
be opened. It returns -1 if the requested segment is already in use. CMAM_openthissegment can be
used in all-to-all communication to open the same segment on all nodes. CMAM_opensegment
always allocates the highest free segment, so it is best to use low segment numbers with
CMAM_open_this_segment.

Notes: The segment identifiers returned by CMAM_open segment and CMAM open this segment
encode the segment number and the alignment of the base_address. More precisely:
segment-id = (segment_num << CMAMSEGSHIFT) I (base_address & 7).

Currently, there are 256 segments available.

The base_address of closed segments is set to -1. As a result, transferring data to a closed seg-
ment typically raises an unaligned-store exception inside of a CMAM handler.

If CMAM_open segment is called with a 0 bytecount, endxferfun is called immediately.

CMAM_shorten_segment reduces the remaining byte count of the specified segment. If the count
becomes <0, end-of-xfer is called. CMAMshortensegment is useful, for example, when the sender
cannot provide as much data as the recipient asked for.

CMAM_query segment returns the remaining byte count of the specified segment. It returns 0 for a
closed segment.

CMAM kill segment closes the segment without calling the end of transfer function. Note that due to
the reordering of packets in the network it is only safe to call CMAMkill segment on a segment for
which it is known that no packets are underway.

PERFORMANCE

The overhead in opening and closing a segment (including the call to end-of-xfer) is about 10us.

SEE ALSO

cmam(3), CMAM_xfer(3), CMAM_xfer_4(3), CMAM(3).

Last change: November 1992

CMAMpopensegment (3)CMAM~open_segment (3 )

CMAM V2, U.C. Berkeley 1



CM-5 Active Message Layer

AUTHOR
Thorsten von Eicken, tve@CS.Berkeley.EDU
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NAME

CMAM_xfer, CMAM_reply_xfer - Transfer data block to segment

SYNOPSIS

#include <cmam/cmam.h>

void CMAMxfer (int node, int seg_addr, void *buff, int byte_count);

void CMAM_reply_xfer (int node, int seg_addr, void *buff, int byte count);

DESCRIPTION
CMAMxfer transfers the block of data at address buff and of length byte count to a segment on the
remote node previously opened with CMAM_open_segment(3). The destination address for the data
on node is specified as a segment plus an unsigned byte offset. The segment and the offset are
encoded in seg_addr which is the sum ('+') of the remote segment id (as returned by
CMAM_open segment) and the unsigned byte offset. This encoding limits the offset to 24 bits.

On arrival at the destination node, the data is stored in memory and the byte count associated with the
segment is decremented. If the count becomes zero, the end-of-xfer function is called as described in
CMAM_open segment(3).

CMAMxfer sends packets on the left data network and polls both, the left and right networks.
CMAM_reply_xfer is identical to CMAM xfer but sends packets on the right data network and polls
only the right side. CMAM_reply_xfer should be used within message handlers to send replies to
avoid the danger of stack overflow (see cmam(3)).

CMAM_xfer can handle arbitrary block sizes and aligments of source and destination buffers.
CMAM_xfer transfers most of the block in special XFER packets with 16 bytes of data each. These
packets must be stored at a double-word boundary on the destination node. The pre-amble and post-
amble necessary to reach this aligment is handled by CMAMxfer.

PERFORMANCE

If the source and the destination buffers have the same aligment relative to double-words (i.e.
(src_buff&7) == ((base_address+offset)&7)) most of the data is transferred with CMAM_xferN at
10Mb/s.

If the aligments differ by a word (i.e. (src_buff ^ (base_address+offset))&7 == 4) most of the block is
transferred by CMAM xfer No at 7Mb/s.

If the source and destination buffers are badly mis-aligned (i.e. (srcbuff^ (baseaddress+offset))&3 !=
0) the transfer rate is low...

SEE ALSO

cmam(3), CMAM_open_segment(3), CMAM_xfer_N(3), CMAM_xfer_4(3), CMAM(3).

AUTHOR
Thorsten von Eicken, tve@CS.Berkeley.EDU

Last change: November 1992
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NAME

CMAM_ wait, CMAMpoll_wait, CMAMpoll, CMAMrequest poll, CMAMreplypoll - Explicit
check for pending messages

SYNOPSIS
#include <cmam/cmam.h>

void CMAMwait(volatile int *flag, int value);

void CMAMpoll wait(volatile int *flag, int value);

void CMAM_poll(void);

void CMAM_requestjpoll(void);

void CMAMreplypoll(void);

DESCRIPTION
The current implementation of CMAM does not use interrupts on message arrival, thus, to receive mes-
sages, the network interface status register must be polled periodically. All CMAM functions sending
messages poll the network so that a node sending messages automatically handles incoming ones. The
most common situation requiring explicit polling is when a node busy-waits for the reception of specific
messages (e.g. signalling the completion of a communication step). For this purpose, CMAM_wait
polls both (left and right) data networks while waiting on a synchronization flag to reach value (i.e.
*flag > value), then subtracts value from flag before returning. (This scheme supposes that, in general,
handlers increment a flag to signal when they have executed.) The difference between CMAM wait
and CMAM_poll wait is that the former does not poll at all if *flag > value at entry, while the latter
polls at least once.

Other wait mechanisms may be implemented using CMAMpoll which polls both data networks, han-
dling all pending messages. CMAM requestpoll and CMAM_reply poll are similar, but poll only
one network.

PERFORMANCE
SEE ALSO

cmam(3), CMAM(3), CMAM_xfer(3).

AUTHOR
Thorsten von Eicken, tve@CS.Berkeley.EDU

Last change: November 1992
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NAME
CMAMenablebarrier, CMAMdisable barrier, CMAMstart barrrier, CMAMend barrier,
CMAM barrier - Global barrier synchronization

SYNOPSIS
#include <cmam/cmam.h>

void CMAM enable barrier (void);

void CMAM disable barrier (void);

void CMAM start barrier (int bit);

int CMAM end barrier (void);

int CMAM_query barrier (void);

int CMAM barrier (int bit);

DESCRIPTION
These functions provide access to the "synchronous global OR" of the CM-5 control network in the
form of a fuzzy barrier. Before using the CMAM barrier functions, the network interface must be ini-
tialized from the host ("control processor" in CM-5 terminology) by calling CMAM enable_barrier.
Note that this conflicts with the initialization required by CMMD's global operations (CMAM turns host
participation off whereas CMMD turns it on by default). CMAM_disable barrier reverts the initiali-
zation performed by CMAM_enable_barrier.

Calling CMAMstartbarrier signals to all other nodes that the current node "entered the barrier". A
call to CMAM end barrier blocks until all nodes have called CMAM startbarrier. While busy-
waiting on the barrier, CMAMend_barrier polls and services the network.

CMAM_query_barrier returns true if all nodes have called CMAMstart barrier (i.e. if a call to
CMAM end barrier would not block). CMAM_query_barrier does not poll the network.

CMAM barrier provides a traditional barrier: it blocks until all other nodes call CMAM_barrier as
well.

Both, fuzzy and traditional barriers provide a one-bit global OR in addition to the synchronization.
When starting the barrier, each processor injects a 1-bit value (the LSB of bit). When ending the bar-
rier, all processors receive the global OR of all 1-bit values.

Note that the host is not involved in any of these barriers.

PERFORMANCE

A call to CMAM_barrier when all processors are already in synch takes 5us.

SEE ALSO

cmam(3).

AUTHOR

Thorsten von Eicken, tve@CS.Berkeley.EDU

Last change: November 1992
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NAME
CMAM4, CMAM_reply 4 - Send single-packet Active Messages

SYNOPSIS
#include <cmam/cmam.h>

void CMAM 4 (int node, void (*fun)(), ... );

void CMAM_reply4 (int node, void (*fun)(),...);

DESCRIPTION
CMAM 4 sends a single-packet Active Message to the remote node, calling the handler fun and pass-
ing up to 4 32-bit word arguments. The call

CMAM(node, foo, il, i2, i3, i4);

sends a single CM-5 network packet to node and causes

foo(il, i2, i3, i4);

to be invoked. CMAM 4 is declared as a varargs function, but really takes up to four words of argu-
ments in addition to node and fun, and passes them into the remote function. Due to SPARC calling
conventions, these arguments can be any combination of integer and floating-point values (i.e., passed
in registers i2 through i5). Note that CMAM 4 always transmits a full CM-5 packet, thus there is no
performance advantage in passing less than four words of arguments to the remote function.

CMAM 4 sends the Active Message on the left data network and polls both, the left and right net-
works. CMAM_reply_4 is identical to CMAM_4, but uses the right data network and polls only the
right side. CMAM reply_4 should be used within message handlers for replies to avoid the danger of
stack overflow (see cmam(3)). Neither CMAM_4 nor CMAM_reply 4 may be used from within a
reply-message handler.

CMAM may be used to send Active Messages from the host ("control processor" in CM-5 terminol-
ogy) to the processing nodes. However, note that the executable running on the host is different from
the one running on the processing nodes, therefore the address of functions differ. The linker cmld(l)
arranges for functions named CMPE_... or cmpe_... on the processing nodes to be resolved correctly on
the host. To send Active Messages to the host from processing nodes, see CMAMhost(3).

PERFORMANCE
CMAM_4 takes 2us, CMAM_reply 4 takes 1.6us. Handling either one at arrival takes 2us.

SEE ALSO

CMAM(3) extends CMAM_4 in that it sends an Active Message of arbitrary length, passing a buffer
as argument. CMAM_indirect_4(3) is similar to CMAM_4 but may cram an additional word of infor-
mation into the CM-5 packet in certain circumstances.

cmam(3), CMAM(3), CMAM_xfer(3), CMAM_host(3), CMAM indirect 4(3).

AUTHOR
Thorsten von Eicken, tve@CS.Berkeley.EDU

Last change: November 1992
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NAME
CMAMxfer_N, CMAMreplyxfer_N, CMAM_xfer_No, CMAM_replyxfer_No, CMAM xfer Nb,
CMAM_reply_xfer_Nb - Transfer aligned data block to segment

SYNOPSIS
#include <cmam/cmam.h>

void CMAM_xfer_N (int node, int seg_addr, void *buff, int byte_count);

void CMAM_xferNo (int node, int seg_addr, void *buff, int byte_count);

void CMAM_xferNb (int node, int seg_addr, void *buff, int byte_count);

void CMAM_reply_xfer_N (int node, int seg_addr, void *buff, int byte count);

void CMAM_reply_xfer_No (int node, int seg_addr, void *buff, int byte_count);

void CMAM reply_xferNb (int node, int seg_addr, void *buff, int byte count);

DESCRIPTION
CMAM_xfer_N transfers the block of quadwords at address buff and of length byte count to a seg-
ment on the remote node previously opened with CMAM open segment(3). The destination address
for the data on node is specified as a segment plus an unsigned byte offset. The segment and the offset
are encoded in seg_addr which is the sum ('+') of the remote segment id (as returned by
CMAM_open segment) and the unsigned byte offset. This encoding limits the offset to 24 bits.

On arrival at the destination node, the data is stored in memory and the byte count associated with the
segment is decremented. If the count becomes zero, the end-of-xfer function is called as described in
CMAM_open_segment(3).

On arrival at the destination node, the data is stored in memory and the byte count associated with the
segment is decremented. If the count becomes zero, the end-of-xfer function is called as described in
CMAM_opensegment(3).

CMAM_xfer_N sends packets on the left data network and polls both, the left and right networks.
CMAM_reply xfer_N is identical to CMAMxfer_N but sends packets on the right data network and
polls only the right side. CMAM reply_xfer_N should be used within message handlers to send
replies to avoid the danger of stack overflow (see cmam(3)).

CMAM_xfer _N requires the source and the destination block the be doubleword aligned (i.e. (addr&7)
== 0) and transfers floor(byte_count/16) quadword packets.

CMAM xfer No and CMAMreply_xferNo are similar to CMAMxferN respectively
CMAM_replyxfer N but require only word-aligment of the source data block (i.e. (buff&3) == 0).

CMAMxfer_Nb and CMAM_reply_xfer_Nb transfer up to 8 bytes of any aligment to a remote seg-
ment.

All six function described in this man page are intended to be building blocks for more convenient
block transfer functions such as CMAM_xfer(3).

PERFORMANCE

CMAM_xfer N transfers data at up to 10Mb/s. A node sending and receiving xfers at the same time
typically sends at 5Mb/s and receives at 5Mb/s. A node receiving two xfers to different segments
accepts data at about 7.5Mb/s due to overhead incurred when switching between the two segments.

CMAM xfer No transfers data at most at 7Mb/s.

SEE ALSO

cmam(3), CMAM_open segment(3), CMAM_xfer(3), CMAM_xfer_4(3), CMAM(3)

AUTHOR
Thorsten von Eicken, tve@CS.Berkeley.EDU

Last change: November 1992
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NAME
CMAM_ xfer_[1234]i, CMAM_reply_xfer_[1234]i, CMAMxfer_[12]d, CMAM reply_xfer[12]d-
Transfer single data packet to segment

SYNOPSIS
#include <cmam/cmam.h>

void CMAM xfer _li (int node, int segment id, unsigned int offset, int dl);

void CMAM xfer 2i (int node, int segment_id, unsigned int offset, int dl, int d2);

void CMAM_xfer_3i (int node, int segment_id, unsigned int offset, int dl, int d2, int d3);

void CMAMxfer_4i (int node, int segment_id, unsigned int offset, int dl, int d2, int d3, int d4);

void CMAMxfer_ld (int node, int segment_id, unsigned int offset, double dl);

void CMAM_xfer_2d (int node, int segmentid, unsigned int offset, double dl, double d2);

void CMAM reply_xfer_li (int node, int segment id, unsigned int offset, int dl);

void CMAM_reply_xfer_2i (int node, int segment id, unsigned int offset, int dl, int d2);

void CMAM_reply_xfer_3i (int node, int segment_id, unsigned int offset, int dl, int d2, int d3);

void CMAM reply_xfer_4i (int node, int segment id, unsigned int offset, int dl, int d2, int d3, int
d4);

void CMAM_reply_xfer_d (int node, int segment id, unsigned int offset, double dl);

void CMAM_reply_xfer_2d (int node, int segmentid, unsigned int offset, double dl, double d2);

DESCRIPTION
These functions transfer one CM-5 packet with 1 to 4 32-bit words of data to a segment on the remote
node previously opened with CMAM open_segment(3). The destination address for the data on node
is specified as a segment plus an unsigned byte offset segmentid (as returned by
CMAM_open segment) specifies the segment and offset specifies an unsigned 24-bit byte offset within
the segment.

On arrival at the destination node, the data is stored in memory and the byte count associated with the
segment is decremented. If the count becomes zero, the end-of-xfer function is called as described in
CMAM_open segment(3).

The CMAM_xfer * functions send packets on the left data network and poll both, the left and right
networks. The CMAM_reply_xfer_* functions are identical, but send packets on the right data net-
work and poll only the right network. CMAM_reply_xfer_* should be used within message handlers
to send replies to avoid the danger of stack overflow (see cmam(3)).

CMAM xfer 4i and CMAM xfer 2d require the destination to be doubleword aligned (i.e. (addr&7)
== 0). The other functions transfering less than 4 32-bit words require word alignment of the destina-
tion.

PERFORMANCE
SEE ALSO

cmam(3), CMAM_opensegment(3), CMAM_xfer(3), CMAM_xfer_N(3), CMAM(3).

AUTHOR

Thorsten von Eicken, tve@CS.Berkeley.EDU

Last change: November 1992
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CM-5 Active Message Layer

NAME

CMAM_host, CMAM host reply, CMAM_host_4, CMAM_host reply 4 - Send Active Messages to
host

SYNOPSIS
#include <cmam/cmam.h>

void CMAM_host (void (*fun)(), void *buffer, int byte count);
void CMAM_host_reply (void (*fun)(), void *buffer, int bytecount);

void CMAM host 4 (void (*fun)(), ...);

void CMAM_host_reply_4 (void (*fun)(), ...);

DESCRIPTION
CMAM_host, CMAM_host_reply, CMAM_host_4, and CMAM_host reply 4 are similar to
CMAM(3), CMAM_reply(3), CMAM_4(3), respectively CMAM reply_4(3), but send an Active Mes-
sage to the host processor ("control processor" in CM-5 terminology) instead of a processing node.

Note that the executable running on the host is different from the one running on the processing nodes
and therefore the address of functions differ. While the linker cmld(l) arranges for functions named
CMPE... or cmpe_... on the processing nodes to be resolved correctly on the host, no similar symbol
resolution is provided the other way around. One solution is to broadcast the address of all host
handlers to the processing nodes at the beginning of a program. Alternatively, a table of handlers may
be set-up on the host, its base address broadcast to the processing nodes and CMAM_host indirect(3)
used to send Active Messages to the host. Finally, the cmld shell script could be modifed to include
resolution of host symbols within the processing node executable.

PERFORMANCE
These functions are very slow because an O.S. trap is required for every packet.

SEE ALSO
cmam(3), CMAM(3), CMAM4(3), CMAMindirect(3).

AUTHOR
Thorsten von Eicken, tve@CS.Berkeley.EDU

Last change: November 1992
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CM-5 Active Message Layer

NAME
CMAMhost xfer, CMAMhost_reply_xfer - Transfer data block to segment on host

SYNOPSIS
#include <cmam/cmam.h>

void CMAM_hostxfer (int seg_addr, void *buff, int byte count);

void CMAM_host_reply_xfer (int segaddr, void *buff, int byte_count);

DESCRIPTION

CMAMhost_xfer and CMAM_hostreply_xfer are similar to CMAM_xfer(3) respectively
CMAM_reply_xfer(3) but transfer data to the host processor ("control processor" in CM-5 terminol-
ogy) instead of a processing node.

PERFORMANCE
These functions are very slow because an O.S. trap is required for every packet.

SEE ALSO

cmam(3), CMAM_xfer(3), CMAM host(3).

AUTHOR
Thorsten von Eicken, tve@CS.Berkeley.EDU

Last change: November 1992

CMAM hostxfer(3)CMAM-host xfer(3)
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CM-5 Active Message Layer

NAME

CMAM_hostxferN, CMAMreply_host xfer_N, CMAM_hostxfer_No, CMAM reply_hostxfer_No,
CMAM_hostxfer_Nb, CMAM_reply_host xfer_Nb - Transfer aligned data block to segment on host

SYNOPSIS
#include <cmam/cmam.h>

void CMAM_hostxfer_N (int seg_addr, void *buff, int byte count);

void CMAM_hostxferNo (int seg_addr, void *buff, int byte count);

void CMAM_hostxfer_Nb (int seg addr, void *buff, int byte count);

void CMAM_host_reply_xfer N (int seg_addr, void *buff, int bytecount);

void CMAM_hostreply _xferNo (int seg_addr, void *buff, int bytecount);
void CMAM_host_reply_xfer Nb (int seg_addr, void *buff, int byte count);

DESCRIPTION

CMAM_hostxfer_N, CMAM_host_xfer_No, CMAM_hostxfer_Nb, CMAM_host_replyxfer_N,
CMAMhost reply_xfer_No and CMAM host reply_xfer Nb are similar to CMAMxfer_N(3),
CMAMxfer_No(3), CMAM_xfer_Nb(3), CMAM reply_xfer _N(3), CMAMreply_xferNo(3)
respectively CMAM_reply_xfer_Nb(3) but transfer data to the host processor ("control processor" in
CM-5 terminology) instead of a processing node.

PERFORMANCE

These functions are very slow because an O.S. trap is required for every packet.

SEE ALSO

cmam(3), CMAM_xferN(3), CMAMhost(3).

AUTHOR

Thorsten von Eicken, tve@CS.Berkeley.EDU

Last change: November 1992

CMAM host xfer N (3)CMAM-host xfer-N(3)
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CM-5 Active Message Layer

NAME

CMAM_hostxfer[1234]i, CMAM reply_hostxfer[ [1234]i, CMAM_hostxfer_[12]d,
CMAMreply host xfer_[12]d - Transfer single data packet to segment on host

SYNOPSIS
#include <cmam/cmam.h>

void CMAMhostxferli (int segmentid, unsigned int offset, int dl);
void CMAM_hostxfer_2i (int segment id, unsigned int offset, int dl, int d2);

void CMAM_hostxfer_3i (int segment id, unsigned int offset, int dl, int d2, int d3);

void CMAMhostxfer_4i (int segmentid, unsigned int offset, int dl, int d2, int d3, int d4);

void CMAM_host_xfer_ld (int segment id, unsigned int offset, double dl);

void CMAMhostxfer_2d (int segment id, unsigned int offset, double dl, double d2);

void CMAM_host_reply_xfer_li (int segment_id, unsigned int offset, int dl);

void CMAM_hostreply_xfer_2i (int segment_id, unsigned int offset, int dl, int d2);

void CMAM_host_reply_xfer 3i (int segment_id, unsigned int offset, int dl, int d2, int d3);

void CMAM_host_reply_xfer_4i (int segmentid, unsigned int offset, int dl, int d2, int d3, int d4);

void CMAM_host_reply_xfer_ld (int segmentid, unsigned int offset, double dl);

void CMAM_host_replyxfer_2d (int segment_id, unsigned int offset, double dl, double d2);

DESCRIPTION

CMAM_host_xfer_[1..4]i, CMAMhostxfer_[1..2]d, CMAMhost_reply_xfer_[1..4]i and
CMAM host reply_xfer_[1..2]d are similar to CMAMxfer_[1..4]i(3), CMAM xfer_[1..2]d(3),
CMAM reply xfer_[1..4]i(3) respectively CMAMreply_xfer_[1..2]d(3) but transfer data to the host
processor ("control processor" in CM-5 terminology) instead of a processing node.

PERFORMANCE

These functions are very slow because an O.S. trap is required for every packet.

SEE ALSO

cmam(3), CMAMxfer(3), CMAM host(3).

AUTHOR

Thorsten von Eicken, tve@CS.Berkeley.EDU

Last change: November 1992
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CM-5 Active Message Layer

NAME

CMAM settags, CMAM_sethandler, CMAM_set_reply handler - Control hardware message tag
usage

SYNOPSIS

#include <cmam/cmam.h>

void CMAM_set tags (int CMAM tag, int CMAM indirecttag, int CMAM_xfer_tag);

typedef void CMAMtag_handler (void *NI_base);

void CMAM_set_handler (int tag, CMAM tag_handler *handler);

void CMAMset reply_handler (int tag, CMAM_tag_handler *handler);

DESCRIPTION

CMAM has been designed such that it can be mixed with other message layers or extended by the user:
CMAM can be directed to use any of the available hardware packet tags and handlers for non-CMAM
packets can be registered with CMAM.

The CMAM initialization function CMAMenable(3) sets CMAM up to use hardware tags 1, 2, and 3
for CMAM, CMAM indirect, and CMAM_ xfer, respectively, packets. After initialization, these tag
assignments can be changed by calling CMAMset_tags on the host ("control processor" in CM-5 ter-
minology) while the processing nodes are idle. As of version 7.1.4 of CMOST, only tags 0 through 3
are available to user message handlers. The remaining tags 4 through 15 are reserved (but not all used)
by CMOST. Please complain to Thinking Machines Corp. for not leaving more tags to the user!

For multiple message layers to operate concurrently, a certain amount of coordination in handling
incoming packets is necessary. Whenever CMAM polls the network and discovers the arrival of a
packet, it dispatches to the appropriate tag-handler based on the hardware packet tag. The dispatch is
performed by branching into a table indexed by the tag, each table "entry" holding 64 SPARC instruc-
tions. CMAM_sethandler takes a pointer to a tag-handler and copies 64 instructions into the
appropriate entry in the left data network table. Similarly, CMAM_set_reply_handler copies into the
right data network table. While copying the instructions, both functions adjust the PC-relative offsets of
CALL instructions. The offsets of branch instructions are not modified (the offsets are too small to be
adjustable in most cases). When called, the tag-handler receives the base address of the Network Inter-
face chip (e.g. 0x20000000 on the PNs) as argument.

CMAM does not export any of its handlers for other message layers to call when they receive a CMAM
packet. Several existing functions could be used, please contact the author if you need this type of func-
tionality.

SEE ALSO

cmam(3), CMAM_enable(3), CMAM(3), CMAM indirect(3), CMAM_xfer(3), CMAMhost(3).

AUTHOR
Thorsten von Eicken, tve@CS.Berkeley.EDU

Last change: November 1992

CMAM-setags (3)CMAM-settags (3)
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Abstract

The design challenge for large-scale multiprocessors is (1) to minimize communication overhead, (2)
allow communication to overlap computation, and (3) coordinate the two without sacrificing processor
cost/performance. We show that existing message passing multiprocessors have unnecessarily high com-
munication costs. Research prototypes of message driven machines demonstrate low communication
overhead, but poor processor cost/performance. We introduce a simple communication mechanism, Active
Messages, show that it is intrinsic to both architectures, allows cost effective use of the hardware, and
offers tremendous flexibility. Implementations on nCUBE/2 and CM-5 are described and evaluated using a
split-phase shared-memory extension to C, Split-C. We further show that active messages are sufficient to
implement the dynamically scheduled languages for which message driven machines were designed. With
this mechanism, latency tolerance becomes a programming/compiling concern. Hardware support for active
messages is desirable and we outline a range of enhancements to mainstream processors.

1 Introduction

With the lack of consensus on programming styles and usage patterns of large parallel machines, hardware
designers have tended to optimize along specific dimensions rather than towards general balance. Com-
mercial multiprocessors invariably focus on raw processor performance, with network performance in a
secondary role, and the interplay of processor and network largely neglected. Research projects address
specific issues, such as tolerating latency in dataflow architectures and reducing latency in cache-coherent
architectures, accepting significant hardware complexity and modest processor performance in the prototype
solutions. This paper draws on recent work in both arenas to demonstrate that the utility of exotic message-
driven processors can be boiled down to a simple mechanism and that this mechanism can be implemented
efficiently on conventional message passing machines. The basic idea is that the control information at the
head of a message is the address of a user-level instruction sequence that will extract the message from
the network and integrate it into the on-going computation. We call this Active Messages. Surprisingly,
on commercial machines this mechanism is an order of magnitude more efficient than the message passing
primitives that drove the original hardware designs. There is considerable room for improvement with
direct hardware support, which can be addressed in an evolutionary manner. By smoothly integrating
communication with computation, the overhead of communication is greatly reduced and an overlap of the

1This report first appeared in the Proceedings of the 19th International Symposium on Computer Architecture, ACM Press, May
1992, Gold Coast, Australia. Copyright ©1992 ACM Press.
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two is easily achieved. In this paradigm, the hardware designer can meaningfully address what balance is
required between processor and network performance.

1.1 Algorithmic communication model

The most common cost model used in algorithm design for large-scale multiprocessors assumes the program
alternates between computation and communication phases and that communication requires time linear in
the size of the message, plus a start-up cost[9]. Thus, the time to run a program is T = Tcompute +Tcommunicate

and Tcommunicate = Nc(Ts + LcTb), where T8 is the start-up cost, Tb is the time per byte, Lc is the message
length, and Nc is the number of communications. To achieve 90% of the peak processor performance, the
programmer must tailor the algorithm to achieve a sufficiently high ratio of computation to communication
that Tcompute > 9Tcommunicate. A high-performance network is required to minimize the communication
time, and it sits 90% idle!

If communication and computation are overlapped the situation is very different. The time to run
a program becomes T = max(Tco,,mpte + N L N Tb). Thus, to achieve high processor efficiency,
the communication and compute times need only balance, and the compute time need only swamp the
communication overhead, i.e., Tcomput, > NTs. By examining the average time between communication
phases (Tcompute /N) and the time for message transmission, one can easily compute the per-processor
bandwidth through the network required to sustain a given level of processor utilization. The hardware can
be designed to reflect this balance. The essential properties of the communication mechanism are that the
start-up cost must be low and that it must facilitate the overlap and co-ordination of communication with
on-going computation.

1.2 Active Messages

Active Messages is an asynchronous communication mechanism intended to expose the full hardware
flexibility and performance of modem interconnection networks. The underlying idea is simple: each
message contains at its head the address of a user-level handler which is executed on message arrival
with the message body as argument. The role of the handler is to get the message out of the network
and into the computation ongoing on the processing node. The handler must execute quickly and to
completion. As discussed below, this corresponds closely to the hardware capabilities in most message
passing multiprocessors where a privileged interrupt handler is executed on message arrival, and represents
a useful restriction on message driven processors.

Under Active Messages the network is viewed as a pipeline operating at a rate determined by the
communication overhead and with a latency related to the message length and the network depth. The sender
launches the message into the network and continues computing; the receiver is notified or interrupted on
message arrival and runs the handler. To keep the pipeline full, multiple communication operations can
be initiated from a node, and computation proceeds while the messages travel through the network. To
keep the communication overhead to a minimum, Active Messages are not buffered except as required for
network transport. Much like a traditional pipeline, the sender blocks until the message can be injected into
the network and the handler executes immediately on arrival.

Tolerating communication latency has been raised as a fundamental architectural issue[ 1]; this is not
quite correct. The real architectural issue is to provide the ability to overlap communication and computation,
which, in-tum, requires low-overhead asynchronous communication. Tolerating latency then becomes a
programming problem: a communication must be initiated sufficiently in advance of the use of its result.
In Sections 2 and 3 we show two programming models where the programmer and compiler, respectively,
have control over communication pipelining.
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Active Messages is not a new parallel programming paradigm on par with send/receive or shared-
memory: it is a more primitive communication mechanism which can be used to implement these
paradigms (among others) simply and efficiently. Concentrating hardware design efforts on implementing
fast Active Messages is more versatile than supporting a single paradigm with special hardware.

1.3 Contents

In this paper, we concentrate on message-based multiprocessors and consider machines of similar base
technology representing the architectural extremes of processor/network integration. Message passing
machines, including the nCUBE/2, iPSC/2, iPSC/860 and others, treat the network essentially as a fast
I/VO device. Message driven architectures, including Monsoon[18, 17] and the J-Machine[5], integrate the
network deeply into the processor. Message reception is part of the basic instruction scheduling mechanism
and message send is supported directly in the execution unit.

Section 2 examines current message passing machines in detail. We show that send/receive programming
models make inefficient use of the underlying hardware capabilities. The raw hardware supports a simple
form of Active Messages. The utility of this form of communication is demonstrated in terms of a fast, yet
powerful asynchronous communication paradigm. Section 3 examines current message driven architectures.
We show that the power of message driven processing, beyond that of Active Messages, is costly to
implement and not required to support the implicitly parallel programming languages for which these
architectures were designed. Section 4 surveys the range of hardware support that could be devoted to
accelerating Active Messages.

2 Message passing Architectures

In this section we examine message passing machines, the one architecture that has been constructed and
used on a scale of a thousand high-performance processors. We use the nCUBE/2 and the CM-5 as primary
examples.

The nCUBE/2 has up to a few thousand nodes interconnected in a binary hypercube network. Each
node consists of a CPU-chip and DRAM chips on a small double-sided printed-circuit board. The CPU chip
contains a 64-bit integer unit, an IEEE floating-point unit, a DRAM memory interface, a network interface
with 28 DMA channels, and routers to support cut-through routing across a 13-dimensional hypercube. The
processor runs at 20 Mhz and delivers roughly 5 MIPS or 1.5 MFLOPS.

The CM-5 has has up to a few thousand nodes interconnected in a "hypertree" (an incomplete fat tree).
Each node consists of a 33 Mhz Sparc RISC processor chip-set (including FPU, MMU and cache), local
DRAM memory and a network interface to the hypertree and broadcast/scan/prefix control networks. In the
future, each node will be augmented with four vector units.

We first evaluate the machines using the traditional programming models. Then we show that
Active Messages are well-suited to the machines and support more powerful programming models with
less overhead.

2.1 Traditional programming models

In the traditional programming model for message passing architectures, processes communicate by match-
ing a send request on one processor with a receive request on another. In the synchronous, or crystalline[9]
form, send and receive are blocking - the send blocks until the corresponding receive is executed and only
then is data transferred. The main advantage of the blocking send/receive model is its simplicity. Since data
is only transferred after both its source and destination addresses are known, no buffering is required at the
source or destination processors.
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Blocking send/receive communication exacerbates the effects of network latency on communication
latency2: in order to match a send with a receive a 3-phase protocol, shown in Figure 1, is required: the
sender first transmits a request to the receiver which returns an acknowledgement upon executing a matching
receive operation and only then is data transferred. With blocking send/receive, it is impossible to overlap
communication with computation and thus the network bandwidth cannot be fully utilized.

KIS4 -IN 
'141

Figure 1: Three-phase protocol for synchronous send and receive. Note that the communication latency is
at best three network trips and that both send and receive block for at least one network round-trip each.

To avoid the three-phase protocol and to allow overlap of communication and computation, most
message passing implementations offer non-blocking operation: send appears instantaneous to the user
program. The message layer buffers the message until the network port is available, then the message is
transmitted to the recipient, where it is again buffered until a matching receive is executed. As shown in the
ring communication example in Figure 2, data can be exchanged while computing by executing all sends
before the computation phase and all receives afterwards.

Table 1 shows the performance of send/receive on several current machines. The start-up costs are
on the order of a thousand instruction times. This is due primarily to buffer management. The CM-5 is
blocking and uses a three-phase protocol. The iPSC long messages use a three-phase protocol to ensure
that enough buffer space is available at the receiving processor. However, the start-up costs alone prevent
overlap of communication and computation, except for very large messages. For example, on the nCUBE/2
by the time a second send is executed up to 130 bytes of the first message will have reached the destination.
Although the network bandwidth on all these machines is limited, it is difficult to utilize it fully, since this
requires multiple simultaneous messages per processor.

2We call communication latency the time from initiating a send in the user program on one processor to receiving the message
in the user program on another processor, i.e., the sum of software overhead, network interface overhead and network latency.
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Figure 2: Communication steps required for neighboring processors in a ring to exchange data using
asynchronous send and receive. Data can be exchanged while computing by executing all sends before the
computation phase and all receives afterwards. Note that bufferspace for the entire volume ofcommunication
must be allocated for the duration of the computation phase!

Machine Ts Tb Tfp
[ps/mesg] [pts/byte] [s/flop]

iPSC[8] 4100 2.8 25
nCUBE/10[8] 400 2.6 8.3
iPSC/2[8] 700 0.36 3.4

390t 0.2
nCUBE/2 160 0.45 0.50
iPSC/860[13] 160 0.36 0.033[7]

60t 0.5
CM-5+ 86 0.12 0.33[7]

t: messages up to 100 bytes

t: blocking send/receive

Table 1: Asynchronous send and receive overheads in existing message passing machines. T is the
message start-up cost (as described in Section 1.1), Tb is the per-byte cost and Tfp is the average cost of a
floating-point operation as reference point.
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2.2 Active Messages

Although the hardware costs of message passing machines are reasonable, the effectiveness of the machine
is low under traditional send/receive models due to poor overlap of communication and computation, and
due to high communication overhead. Neither of these shortcomings can be attributed to the base hardware:
for example, initiating a transmission on the nCUBE/2 takes only two instructions, namely to set-up the
DMA3. The discrepancy between the raw hardware message initiation cost and the observed cost can be
explained by a mismatch between the programming model and the hardware functionality. Send and receive
is not native to the hardware: the hardware allows one processor to send a message to another one and cause
an interrupt to occur at arrival. In other words the hardware model is really one of launching messages into
the network and causing a handler to be executed asynchronously upon arrival. The only similarity between
the hardware operation and the programming model is in respect to memory address spaces: the source
address is determined by the sender while the destination address is determined by the receiver4.

Active Messages simply generalize the hardware functionality by allowing the sender to specify the
address of the handler to be invoked on message arrival. Note that this relies on a uniform code image on
all nodes, as is commonly used (the SPMD programming model). The handler is specified by a user-level
address and thus traditional protection models apply. Active Messages differ from general remote procedure
call (RPC) mechanisms in that the role of the Active Message handler is not to perform computation on the
data, but to extract the data from the network and integrate it into the ongoing computation with a small
amount of work. Thus, concurrent communication and computation is fundamental to the message layer.
Active Messages are not buffered, except as required for network transport. Only primitive scheduling
is provided: the handlers interrupt the computation immediately upon message arrival and execute to
completion.

The key optimization in Active Messages compared to send/receive is the elimination of buffering.
Eliminating buffering on the receiving end is possible because either storage for arriving data is pre-allocated
in the user program or the message holds a simple request to which the handler can immediately reply.
Buffering on the sending side is required for the large messages typical in high-overhead communication
models. The low overhead of Active Message makes small messages more attractive, which eases program
development and reduces network congestion. For small messages, the buffering in the network itself is
typically sufficient.

Deadlock avoidance is a rather tricky issue in the design of Active Messages. Modem network designs
are typically deadlock-free provided that nodes continuously accept incoming messages. This translates
into the requirement that message handlers are not allowed to block, in particular a reply (from within a
handler) must not busy-wait if the outgoing channel is backed-up.

2.2.1 Active Messages on the nCUBE/2

The simplicity of Active Messages and its closeness to hardware functionality translate into fast execution.
On the nCUBE/2 it is possible to send a message containing one word of data in 21 instructions taking
lts. Receiving such a message requires 34 instructions taking 15/is, which includes taking an interrupt

on message arrival and dispatching it to user-level. This near order of magnitude reduction (To = 30/ps,
Tb = 0.45tps) in send overhead is greater than that achieved by a hardware generation. Table 2 breaks the
instruction counts down into the various tasks performed.

The Active Message implementation reduces buffer management to the minimum required for actual
data transport. On the nCUBE/2 where DMA is associated with each network channel, one memory buffer

3 0n the nCUBE/2, each of the 13 hypercube channels has independent input and output DMAs with a base-address and a count
register each. Sending or receiving a message requires loading the address and the count.

4Shared-memory multiprocessor advocates argue that this is the major cause of programming difficulty of these machines.
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Instruction count
Task send receive
Compose/consume message 6 9
Trap to kernel 2 -
Protection 3

Buffer management 3 3
Address translation 1 1

Hardware set-up 6 2
Scheduling - 7
Crawl-out to user-level - 12
Total 21 34

Table 2: Breakdown into tasks of the instructions required to send and receive a message with one word
of data on the nCUBE/2. "Message composition" and "consumption" include overhead for a function
call and register saves in the handler. "Protection" checks the destination node and limits message length.
"Hardware set-up" includes output channel dispatch and channel ready check. " Scheduling" accounts for
ensuring handler atomicity and dispatch. "Crawling out to user-level" requires setting up a stack frame and
saving state to simulate a return-from-interrupt at user-level.

per channel is required. Additionally, it is convenient to associate two buffers with the user process: one
to compose the next outgoing message and one for handlers to consume the arrived message and compose
eventual replies. This set-up reduces buffer management to swapping pointers for a channel buffer with a
user buffer. Additional buffers must be used in exceptional cases to prevent deadlock: if a reply from within
a handler blocks for "too long", it must be buffered and retried later so that further incoming messages
can be dispatched. This reply buffering is not performed by the message layer itself, rather REPLY returns
an error code and the user code must perform the buffering and retry. Typically the reply (or the original
request) is saved onto the stack and the handlers for the incoming messages are nested within the current
handler.

The breakdown of the 55 instructions in Table 2 shows the sources of communication costs on the
nCUBE/2. A large fraction of instructions (22%) are used to simulate user-level interrupt handling.
Hardware set-up (15%) is substantial due to output channel selection and channel-ready checks. Even the
minimal scheduling and buffer management of Active Messages is still significant (13%). Note however,
that the instruction counts on the nCUBE/2 are slightly misleading, in that the system call/return instructions
and the DMA instructions are far more expensive than average.

The instruction breakdown shows clearly that Active Messages are very close to the absolute minimal
message layer: only the crawl-out is Active Message specific and could potentially be replaced. Another
observation is that most of the tasks performed here in software could be done easily in hardware. Hard-
ware support for active messages could significantly reduce the overhead with a small investment in chip
complexity.

2.2.2 Active Messages on the CM-5

The Active Messages implementation on the CM-5 differs from the nCUBE/2 implementation for five
reasons 5:

SThe actual network interface is somewhat more complicated than described below, we only present the aspects relevant to this
discussion.
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1. The CM-5 provides user-level access to the network interface and the node kernel time-shares the
network correctly among multiple user processes.

2. The network interface only supports transfer of packets of up to 24 bytes (including 4 bytes for the
destination node) and the network routing does not guarantee any packet ordering.

3. The CM-5 has two identical, disjoint networks. The deadlock issues described above are simply
solved by using one network for requests and the other for replies. One-way communication can use
either.

4. The network interface does not have DMA. Instead, it contains two memory-mapped FIFOs per
network, one for outgoing messages and one for incoming ones. Status bits indicate whether incoming
FIFOs hold messages and whether the previous outgoing message has been successfully sent by the
network interface. The network interface discards outgoing messages if the network is backed-up or
if the process is time-sliced during message composition. In these cases the send has to be retried.

5. The network interface generally does not use interrupts in the current version due to their prohibitive
cost. (The hardware and the kernel do support interrupts, but their usefulness is limited due to the
cost.) For comparison, on the nCUBE/2 the interrupt costs the same as the system call which would
have to be used instead since there is no user-level access to the network interface.

Sending a packet-sized Active Message amounts to stuffing the outgoing FIFO with a message having
a function pointer at its head. Receiving such an Active Message requires polling, followed by loading the
packet data into argument registers, and calling the handler function. Since the network interface status has
to be checked whenever a message is sent (to check the send-ok status bit), servicing incoming messages at
send time costs only two extra cycles. Experience indicates that the program does not need to poll explicitly
unless it enters a long computation-only loop.

Sending multi-packet messages is complicated by the potential reordering of packets in the network.
For large messages, set-up is required on the receiving end. This involves a two-phase protocol for GET, and
a three-phase protocol for PUT (discussed below). Intermediate-sized messages use a protocol where each
packet holds enough header information (at the expense of the payload) that the arrival order is irrelevant.

The performance of Active Message on the CM-5 is very encouraging: sending a single-packet
Active Message (function address and 16 bytes of arguments) takes 1.6ps (~ 50 cycles) and the receiver
dispatch costs 1.7/s. The largest fraction of time is spent accessing the network interface across the memory
bus. A prototype implementation of blocking send/receive on top of Active Messages compares favorably
with the (not yet fully optimized) vendor's library: the start-up cost is TC = 23us (vs. 86,as) and the per
byte cost is Tb = 0.12tps (identical). Note that due to the three-phase protocol required by send/receive, T
is an order of magnitude larger than the single packet send cost. Using different programming models such
as Split-C, the cost off communication can be brought down to the Active Message packet cost.

2.3 Split-C: an experimental programming model using Active Messages

To demonstrate the utility of Active Messages, we have developed a simple programming model that
provides split-phase remote memory operations in the C programming language. The two split-phase
operations provided are PUT and GET: as shown in Figure 3a, PUT copies a local memory block into a remote
memory at an address specified by the sender. GET retrieves a block of remote memory (address specified by
sender) and makes a local copy. Both operations are non-blocking and do not require explicit coordination
with the remote processor (the handler is executed asynchronously). The most common versions of PUT
and GET increment a separately specified flag on the processor that receives the data. This allows simple
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synchronization through checking the flag or busy-waiting. Operating on blocks of memory can yield large
messages which are critical to performance on current hardware as seen below.

Node 1 Node 2 PUT message GET request

remote node remote node

put handler get handler

remote addr local addr

data length data length

flag addr flag addr

data local node

remote addr

a) b)

Figure 3: Split-C PUT and GET perform split-phase copies of memory blocks to/from remote nodes. Also
shown are the message formats.

The implementations of PUT and GET consist of two parts each: a message formatter and a message
handler. Figure 3b shows the message formats. PUT messages contain the instruction address of the PUT

handler, the destination address, the data length, the completion-flag address, and the data itself. The PUT
handler simply reads the address and length, copies the data and increments the flag. GET requests contain
the information necessary for the GET handler to reply with the appropriate PUT message. Note that it
is possible to provide versions of PUT and GET that copy data blocks with a stride or any other form of
gather/scatter 6 .

To demonstrate the simplicity and performance of Split-C, Figure 4 shows a matrix multiply example
that achieves 95% of peak performance on large nCUBE/2 configurations. In the example, the matrices are
partitioned in blocks of columns across the processors. For the multiplication of C = A x B each processor
GETS one column of A after another and performs a rank- 1 update (DAXPY) with the corresponding elements
of its own columns of B into its columns of C. To balance the communication pattern, each processor first
computes with its own column(s) of A and then proceeds by getting the columns of the next processor. Note
that this algorithm is independent of the network topology and has a familiar shared-memory style. The
remote memory access and its completion are made explicit, however.

The key to obtaining high performance is to overlap communication and computation. This is achieved
by GETting the column for the next iteration while computing with the current column. It is now necessary
to balance the latency of the GET with the time taken by the computation in the inner loops. Quantifying the
computational cost is relatively easy: for each GET the number of multiply-adds executed is Nm (where m
is the number of local columns of B and C) and each multiply-add takes 1.13s. To help understand the
latency of the GET, Figure 6 shows a diagram of all operations and delays involved in the unloaded case.

6Split-C exposes the underlying RPC mechanism the programmer as well, so that specialized communication structures can be
constructed, e.g., enqueue record.
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The matrices are partitioned in blocks of columns across the processors. For the multiplication of CN x M =

AN xR x BRx M each processor GETs one column of A after another andperforms a rank- update (DAXPY)
with its own columns of B into its columns of C. To balance the communication pattern, each processor
first computes with its own column(s) of A and then proceeds by getting the columns of the next processor.
This network topology independent algorithm achieves 95% of peak performance on large nCUBE/2
configurations.

int N, R, M; /* matrix dimensions (see figure) */
double A[R/P] [N], B[M/P] [R], C[M/P] [N]; /* matrices */
int i, j, k; /* indices */

int jO, dj, nj; /* initial j, delta j (j=jO+dj), next j */
int P, p; /* number of processors, my processor */
int Rp = R/P;

double VO[N], V1[N]; /* buffers for getting remote columns */
double *V=VO, *nV=Vl, *tV; /* current column, next column, temp column */
static int flag = 0; /* synchronization flag */
extern void get(int proc, void *src, int size, void *dst, int &flag);

jO = p * Rp; /* starting column */
get(p, &A[O][0], N*sizeof(double), nV, &flag); /* get first column of A */
for(dj=0; dj<R; dj++) { /* loop over all columns of A */

j = (jO+dj)%R; nj = (jO+dj+l)%R; /* this&next column index */
while(!check(1, &flag)) ; /* wait for previous get */
tV=V; V=nV; nV=tV; /* swap current&next column */
if(nj != jO) /* if not done, get next column */

get(nj/Rp, &A[nj%Rp][0], N*sizeof(double), nV, &flag);
for(k=0; k<M/P; k++) /* accum. V into every col. with scale */

for(i=0; i<N; ++) /* unroll 4x (not shown) */

C[i] [k] = C[i] [k] + V[i]*B[j] [k];

}

Figure 4: Matrix multiply example in Split-C.
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The two top curves in Figure 5 show the performance predicted by the model and measured on a 128
node nCUBE/2, respectively, as the number of columns per processor of A is varied from 1 to 32. N
is kept constant (N = 128) and R is adjusted to keep the total number of arithmetic operations constant
(R = 262144/M). The matrix multiply in the example is computation bound if each processor holds
more than two columns of A (i.e., m > 2). The two bottom curves show the predicted and measured
network utilization. The discrepancy between the model and the measurement is due to the fact that network
contention is not modeled. Note that while computational performance is low for small values of m, the
joint processor and network utilization is relatively constant across the entire range. As the program changes
from a communication to a computation problem the "overall performance" is stable.
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Figure 5: Performance of Split-C matrix multiply on 128 processors compared to predicted performance
using the model shown in Figure 6.

2.4 Observations

Existing message passing machines have been criticized for their high communication overhead and the
inability to support global memory access. With Active Messages we have shown that the hardware
is capable of delivering close to an order of magnitude improvement today if the right communication
mechanism is used, and that a global address space may well be implemented in software. Split-C is an
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example of how Active Messages can be incorporated into a coarse-grain SPMD (single-program multiple-
data) programming language. It generalizes shared memory read/write by providing access to blocks of
memory including simple synchronization. It does not, however, address naming issues.

Using Active Messages to guide the design, it is possible to improve current message passing machines
in an evolutionary, rather than revolutionary, fashion. In the next section, we examine research efforts to
build hardware which uses a different approach to provide another magnitude of performance improvement.

a) GET cost model

Proc c:0m:p4~ :::~:eiROj qi rie:!hand l'

rProc reiveeivi re

b) Overlapping communication and computation
.... overlapped computation

Proc :'A:m(:'!Biii compute J receive ,ervic replY ' compute !c::::handle

Net .... ..h .

· .... ,, .... ,. .................. ........ ...... ....................-rProc P~omPos~ send compute l rece~esei~icreply , compute receive: handle

Figure 6: Performance model forGET. Compose accounts for the time to set-up the request. Xmit is the time
to inject the message into the network and hops is the time taken for the network hops. Service includes for
copying the data into the reply buffer and handle for the time to copy the data into the destination memory
block.

3 Message driven architectures

Message driven architectures such as the J-Machine and Monsoon expend a significant amount of hardware
to integrate communication into the processor. Although the communication performance achieved by both
machines is impressive, the processing performance is not. At first glance this seems to come from the fact
that the processor design is intimately affected by the network design and that the prototypes in existence
could not utilize traditional processor design know-how. In truth, however, the problem is deeper: in
message driven processors a context lasts only for the duration of a message handler. This lack of locality
prevents the processor from using large register sets. In this section, we argue that the hardware support
for communication is partly counter-productive. Simpler, more traditional, processors can be built without
unduly compromising either the communication or the processing performance.

3.1 Intended programming model

The main driving force behind message driven architectures is to support languages with dynamic paral-
lelism, such as Id90[15], Multilisp[10], and CST[12]. Computation is driven by messages, which contain
the name of a handler and some data. On message arrival, storage for the message is allocated in a scheduling
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queue. When the message reaches the head of the queue, the handler is executed with the data as arguments.
The handler may perform arbitrary computation, in particular it may synchronize and suspend. This ability
to suspend requires general allocation and scheduling on message arrival and is the key difference with
respect to Active Messages.

In the case of the J-Machine, the programming model is put forward in object-oriented language terms [6]:
the handler is a method, the data holds the arguments for the method and usually one of them names the
object the method is to operate on. In a functional language view, the message is a closure with a code
pointer and all arguments of the closure. Monsoon is usually described from the dataflow perspective[18]
and messages carry tokens formed of an instruction pointer, a frame pointer and one piece of data. The data
value is one of the operands of the specified instruction, the other is referenced relative to the frame pointer.

The fundamental difference between the message driven model and Active Messages is where computa-
tion-proper is performed: in the former, computation occurs in the message handlers whereas in the latter it
is in the "background" and handlers only remove messages from the network transport buffers and integrate
them into the computation. This difference significantly affects the nature of allocation and scheduling
performed at message arrival.

Because a handler in the message driven model may suspend waiting for an event, the lifetime of the
storage allocated in the scheduling queue for messages varies considerably. In general, it cannot be released
in simple FIFO or LIFO order. Moreover, the size of the scheduling queue does not depend on the rate at
which messages arrive or handlers are executed, but on the amount of excess parallelism in the program[4].
Given that the excess parallelism can grow arbitrarily (as can the conventional call stack) it is impractical to
set aside a fraction of memory for the message queue, rather it must be able to grow to the size of available
memory.

Active Message handlers, on the other hand, execute immediately upon message arrival, cannot suspend,
and have the responsibility to terminate quickly enough not to back-up the network. The role of a handler is
to get the message out of the network transport buffers. This happens either by integrating the message into
the data structures of the ongoing computation or, in the case of remote service requests, by immediately
replying to the requester. Memory allocation upon message arrival occurs only as far as is required for
network transport (e.g. if DMA is involved) and scheduling is restricted to interruption of the ongoing
computation by handlers. Equivalently, the handlers could run in parallel with the computation on separate
dedicated hardware.

3.2 Hardware Description

The Monsoon and J-Machine hardware is designed to support the message driven model directly. The
J-Machine has a 3-D mesh of processing nodes with a single-chip CPU and DRAM each. The CPU has a
32-bit integer unit with a closely integrated network unit, a small static memory and a DRAM interface (but
no floating-point unit). The hardware manages the scheduling queue as a fixed-size ring buffer in on-chip
memory. Arriving messages are transferred into the queue and serviced in FIFO order. The first word of
each message is interpreted as an instruction pointer and the message is made available to the handler as
one of the addressable data segments. The J-Machine supports two levels of message priorities in hardware
and two independent queues are maintained. Each message handler terminates by executing a SUSPEND
instruction that causes the next message to be scheduled.

In Monsoon, messages arrive into the token queue. The token queue is kept in a separate memory
proportional in size to the frame store. It provides storage for roughly 16 tokens per frame on average.
The queuing policy allows both FIFO and LIFO scheduling. The ALU pipeline is 8-way interleaved, so
eight handlers can be active simultaneously. As soon as a handler terminates or suspends by blocking on a

7A token queue store of 64K tokens for 256K words of frame store and an expected average frame size of 64 words.
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synchronization event, a token is popped from the queue and a new handler starts executing in the vacated
pipeline interleave.

A common characteristic of both machines is that the amount of state available to an executing handler
is very small: four data and three address registers in the J-Machine, an accumulator and three temporary
registers in Monsoon. This reflects the fact that the computation initiated by a single message is small,
typically less than ten arithmetic operations. This small amount of work cannot utilize many registers and
since no locality is preserved from one handler to the next, no useful values could be carried along.

It is interesting to note that the J-Machine hardware does not actually support the message driven
programming model fully in that the hardware message queue is managed in FIFO order and of fixed size.
If a handler does not run to completion, its message must be copied to an allocated region of non-buffer
memory by software. This happens for roughly 1/3 of all messages. The J-Machine hardware does support
Active Messages, however, in which case the message queue serves only as buffering. Close to 1/3 of the
messages hold a request to which the handler immediately replies and general allocation and scheduling is
not required.

In Monsoon, the fact that tokens are popped from the queue means that the storage allocated for an
arriving message is deallocated upon message handler execution. If a handler suspends, all relevant data is
saved in pre-allocated storage in the activation frame thus, unlike the J-Machine, Monsoon does implement
the message driven model, but at the cost of a large amount of high-speed memory.

3.3 TAM: compiling to Active Messages

So far, we have argued that the message driven execution model is tricky to implement correctly in hardware
due to the fact that general memory allocation and scheduling are required upon message arrival. Using
hardware that implements Active Messages, it is easy to simulate the message driven model by performing
the allocation and scheduling in the message handler. Contrary to expectation this does not necessarily
result in lower performance than a direct hardware implementation because software handlers can exploit
and optimize special cases.

TAM[3] (Threaded Abstract Machine), a fine-grain parallel execution model based on Active Messages,
goes one step further and requires the compiler to help manage memory allocation and scheduling. It is
currently used as a compilation target for implicitly parallel languages such as Id90. When compiling for
TAM, the compiler produces sequences of instructions, called threads, performing the computation proper.
It also generates handlers, called inlets, for all messages to be received by the computation. Inlets are used
to receive the arguments to a function, the results of called (child) functions, and the responses of global
memory accesses. All accesses to global data structures are split-phase, allowing computation to proceed
while requests travel through the network.

For each function call, an activation frame is allocated. When an inlet receives a message it typically
stores the data in the frame and schedules a thread within the activation. Scheduling is handled efficiently
by maintaining the scheduling queue within the activation frame: each frame, in addition to holding all
local variables, contains counters used for synchronizing threads and inlets, and provides space for the
continuation vector - the addresses of all currently enabled threads of the activation. Enabling a thread
simply consists of pushing its instruction address into the continuation vector and possibly linking the frame
into the ready queue. Figure 7 shows the activation tree data structure.

Service requests, such as remote reads, can typically be replied-to immediately and need no memory
allocation or scheduling beyond what Active Messages provides. However, in exceptional cases requests
must be delayed either for a lack of resources or because servicing inside the handler is inadequate. To
amortize memory allocation, these requests are of fixed size and queue space is allocated in chunks.

Maintaining thread addresses in frames provides a natural two-level scheduling hierarchy. When a
frame is scheduled (activated), enabled threads are executed until the continuation vector is empty. When
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Activation frame

Figure 7: TAM activation tree and embedded scheduling queue. For each function call, an activation frame
is allocated. Each frame, in addition to holding all local variables, contains counters used to synchronize
threads and inlets, and provides space for the continuation vector - the addresses of all currently enabled
threads of the activation. On each processor, all frames holding enabled threads are linked into a ready
queue. Maintaining the scheduling queue within the activation keeps costs low: enabling a thread simply
consists of pushing its instruction address into the continuation vector and sometimes linking the frame into
the ready queue. Scheduling the next thread within the same activation is simply a pop-jump.

a message is received, two types of behavior can be observed: either the message is for the currently active
frame and the inlet simply feeds the data into the computation, or the message is for a dormant frame in which
case the frame may get added to the ready queue, but the ongoing computation is otherwise undisturbed.

Using the TAM scheduling hierarchy, the compiler can improve the locality of computation by syn-
chronizing in message handlers and enabling computation only when a group of messages has arrived (one
example is when all prerequisite remote fetches for an inner loop body have completed). This follows the
realization that while the arrival of one message enables only a small amount of computation, the arrival
of several closely related messages can enable a significant amount of computation. In cases beyond the
power of compile-time analysis, the run-time scheduling policy dynamically enhances locality by servicing
a frame until its continuation vector is empty.

As a result of the TAM compilation model, typically no memory allocation is required upon message
arrival. Dynamic memory allocation is only performed in large chunks for activation frames and for global
arrays and records. Locality of computation is enhanced by the TAM scheduling hierarchy. It is possible to
implement TAM scheduling well even without any hardware support: on a uniprocessor8 the overall cost
for dynamic scheduling amounts to doubling the number of control-flow instructions relative to languages
such as C. However, the overall performance depends critically on the cost of Active Messages. Table 3
summarizes the frequency of various kinds of messages in the current implementation. On average, a

8Id90 requires dynamic scheduling even on uniprocessors.

15

Activation tree Code segment



message is sent and received every eight TAM instructions (equivalent to roughly 20 RISC instructions).
Note that these statistics are sensitive to optimizations. For example, significant changes can be expected
from a software cache for remote arrays.

Message types data words frequency
Frame-frame 0 1%

1 10%

2 1%

Store request 1 8%
Fetch request 0 40%
Fetch reply 1 40%

Table 3: Frequency of various message types and sizes (represented by thenumberofdata values transmitted)
in the current implementation of TAM. On average, amessage is sent and received every 8 TAMinstructions.
These statistics are sensitive to compiler optimizations and, in some sense, represent a worst case scenario.

4 Hardware support for Active Messages

Active messages provide a precise and simple communication mechanism which is independent of any
programming model. Evaluating new hardware features can be restricted to evaluating their impact on
Active Messages. The parameters feeding into the design are the size and frequency of messages, which
depend on the expected workload and programming models.

Hardware support for active messages falls into two categories: improvements to network interfaces
and modifications to the processor to facilitate execution of message handlers. The following subsections
examine parts of the design space for each of these points of view.

4.1 Network interface design issues

Improvements in the network interface can significantly reduce the overhead of composing a message.
Message reception benefits from these improvements as well, but also requires initiation of the handler.

Large messages: The support needed for large messages is a superset of that for small messages. To
overlap computation with large message communication, some form of DMA transfer must be used.
To set-up the DMA on the receiving side, large messages must have a header which is received first.
Thus, if small messages are well supported, a large message should be viewed as a small one with a
DMA transfer tacked-on.

Message registers: Composing small messages in memory buffers is inefficient: much of the information
present in a small message is related to the current processor state. It comes from the instruction stream,
processor registers and sometimes from memory. At the receiving end, the message header is typically
moved into processor registers to be used for dispatch and to address data. Direct communication
between the processor and the network interface can save instructions and bus transfers. In addition,
managing the memory buffers is expensive.

The J-Machine demonstrates an extreme alternative for message composition: in a single SEND

instruction the contents of two processor registers can be appended to a message. Message reception,
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however, is tied to memory buffers (albeit on-chip). A less radical approach is to compose messages
in registers of a network coprocessor.

Reception can be handled similarly: when received, a message appears in a set of registers. A
(coprocessor) receive instruction enables reception of the next message. In case a coprocessor design
is too complex, the network interface can also be accessed as a memory mapped device (as is the case
in the CM-5).

Reuse of message data: Providing a large register set in the network interface, as opposed to network
FIFO registers, allows a message to be composed using portions of other messages. For example, the
destination for a reply is extracted from the request message. Also, multiple requests are often sent
with mostly identical return addresses. Keeping additional context information such as the current
frame pointer and a code base pointer in the network interface can further accelerate the formatting
of requests.

The NIC[ 11] network interface contains 5 input and 5 output registers which are used to set-up and
consume messages. Output registers retain their value after a message is sent, so that consecutive
messages with identical parts can be sent cheaply. Data can be moved from input to an output registers
to help re-using data when replying or forwarding messages.

Single network port: Multiple network channels connected to a node should not be visible to the message
layer. On the nCUBE/2, for example, a message must be sent out on the correct hypercube link by
the message layer, even though further routing in the network is automatic. The network interface
should allow at least two messages to be composed simultaneously or message composition must be
atomic. Otherwise, replies within message handlers may interfere with normal message composition.

Protection: User-level access to the network interface requires that protection mechanisms be enforced
by the hardware. This typically includes checking the destination node, the destination process and,
if applicable, the message length. For most of these checks a simple range check is sufficient. On
reception, the message head (i.e., the handler address and possibly a process id) can be checked using
the normal memory management system.

Frequent message accelerators: A well-designed network interface allows the most frequent message
types to be issued quickly. For example in the *T[16] proposal, issuing a global memory fetch takes
a single store double instruction (the network interface is memory mapped). The 64-bit data value is
interpreted as a global address and translated in the network interface into a node/local-address pair.
For the return address the current frame pointer is cached in the network interface and the handler
address is calculated from the low-order bits of the store address.

4.2 Processor support for message handlers

Asynchronous message handler initiation is the one design issue that cannot be addressed purely in the
network interface: processor modifications are needed as well. The only way to signal an asynchronous
event on current microprocessors is to take an interrupt. This not only flushes the pipeline, but enters the
kernel. The overhead in executing a user-level handler includes a crawl-out to the handler, a trap back into
the kernel, and finally the return to the interrupted computations. Super-scalar designs tend to increase the
cost of interrupts.

Fast polling: Frequent asynchronous events can be avoided by relying on software to poll for messages.
In execution models such as TAM where the message frequency is very high, polling instructions can

9It may be possible for the user-level handler to return directly to the computation.

17



be inserted automatically by the compiler as part of thread generation. This can be supported with
little or no change to the processor. For example, on Sparc or Mips a message-ready signal can be
attached to the coprocessor condition code input and polled using a branch on coprocessor condition
instruction.

User-level interrupts: User-level traps have been proposed to handle exceptions in dynamically typed pro-
gramming languages[14] and floating-point computations. For Active Messages, user-level interrupts
need only occur between instructions. However, an incoming message may not be for the currently
running user process and the network interface should interrupt to the kernel in this case.

PC injection: A minimal form of multithreading can be used to switch between the main computational
thread and a handler thread. The two threads share all processor resources except for the program
counter (PC). Normally instructions are fetched using the computation PC. On message arrival,
instruction fetch switches to use the handler PC. The handler suspends with a swap instruction, which
switches instruction fetch back to the computation PC. In the implementation the two PCs are in fact
symmetrical. Switching between the two PCs can be performed without pipeline bubbles, although
fetching the swap instruction costs one cycle. Note, that in this approach the format of the message
is partially known to the network interface, since it must extract the handler PC from the message.

Dual processors: Instead of multiplexing the processor between computation threads and handlers, the
two can execute concurrently on two processors, one tailored for the computation and a very simple
one for message handlers (e.g., it may have no floating-point). The crucial design aspect is how
communication is handled between the two processors. The communication consists of the data
received from the network and written to memory, e.g., into activation frames, and the scheduling
queue.

A dual-processor design is proposed for the MIT *T project. It uses an MC88110 for computation
and a custom message processor. In the *T design, the two processors are on separate die and
communicate over a snooping bus. If the two processors were integrated on a single die, they could
share the data cache and communication would be simpler. The appealing aspect of this design is that
normal uniprocessors can be used quite successfully.

For coarse-grain models, such as Split-C, it is most important to overlap computation with the trans-
mission of messages into the network. An efficient network interface allows high processor utilization on
smaller data sets. On the other extreme, implicitly parallel language models that provide word-at-a-time
access to globally shared objects are extremely demanding of the network interface. With modest hardware
support, the cost of handling a simple message can be reduce to a handful of instructions, but not to one.
Unless remote references are infrequent, the amount of resources consumed by message handling is signifi-
cant. Whether dual processors or a larger number of multiplexed processors is superior depends on a variety
of engineering issues, but neither involves exotic architecture. The resources invested in message handling
serve to maintain the efficiency of the background computation.

5 Related work

The work presented in this paper is similar in character to the recent development of optimized RPC
mechanisms in the operating system research community[19, 2]. Both attempt to reduce the communication
layer functionality to the minimum required and carefully analyze and optimize the frequent case. However,
the time scales and the operating system involvement are radically different in the two arenas.

The RPC mechanisms in distributed systems operate on time-scales of 100s of microseconds to mil-
liseconds, and operating system involvement in every communication operation is taken for granted. The
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optimizations presented reduce the OS overhead for moving data between user and system spaces, marshaling
complex RPC parameters, context switches and enforcing security. Furthermore, connecting applications
with system services is a major use of operating system RPCs, so the communication partners must be
protected from one another.

In contrast, the time scale of communication in parallel machines is measured in tens of processor clock
cycles (a few is) and the elimination of all OS intervention is a central issue. Security is less of a concern
given that the communication partners form a single program.

Another difference is that in the distributed systems arena the communication paradigm (RPC) is stable,
whereas we propose a new mechanism for parallel processing and show how it is more primitive than and
subsumes existing mechanisms.

6 Conclusions

Integrated communication and computation at low cost is the key challenge in designing the basic building
block for large-scale multiprocessors. Existing message passing machines devote most of their hardware
resources to processing, little to communication and none to bringing the two together. As a result, a
significant fraction of the processor is lost to the layers of operating system software required to support
message transmission. Message driven machines devote most of their hardware resources to message
transmission, reception and scheduling. The dynamic allocation required on message arrival precludes
simpler network interfaces. The message-by-message scheduling inherent in the model results in short
computation run-lengths, limiting the processing power that can be utilized.

The fundamental issues in designing a balanced machine are providing the ability to overlap commu-
nication and computation and to reduce communication overhead. The active message model presented in
this paper minimizes the software overhead in message passing machines and utilizes the full capability
of the hardware. This model captures the essential functionality of message driven machines with simpler
hardware mechanisms.

Under the active message model each node has an ongoing computational task that is punctuated by
asynchronous message arrival. A message handler is specified in each message and serves to extract the
message data and integrate it into the computation. The efficiency of this model is due to elimination
of buffering beyond network transport requirements, the simple scheduling of non-suspensive message
handlers, and arbitrary overlap of computation and communication. By drawing the distinction between
message handlers and the primary computation, large grains of computation can be enabled by the arrival
of multiple messages.

Active messages are sufficient to support a wide range of programming models and permit a variety of
implementation tradeoffs. The best implementation strategy for a particular programming model depends
on the usage patterns typical in the model such as message frequency, message size and computation grain.
Further research is required to characterize these patterns in emerging parallel languages and compilation
paradigms. The optimal hardware support for active messages is an open question, but it is clear that it is a
matter of engeneering tradeoffs rather than architectural revolution.
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1 Introduction

The CM-5 Active Message layer (CMAM) provides a simple, general purpose communication
primitive as a thin veneer over the raw hardware. It is intended to serve as a substrate for
building libraries that provide higher-level communication abstractions and for generating com-
munication code from a parallel-language compiler, rather than for direct use by programmers.
CMAM is currently in use at UC Berkeley under the Split-C and Id compilers, as well as in a
variety of libraries. (Of course, some people insist on writing in CMAM directly. No accounting
for taste.) This document describes the basic concepts embodied in CMAM and illustrates how
various abstractions can be constructed on this substrate. For specifics on the interface, consult
the manual pages (appendix A). Experience with the CM-5 is assumed.

The basic communication primitive provided by CMAM is an Active Message: a message
with an associated small amount of computation (in the form of a handler) at the receiving end.
In CMAM, the first word of a message points to the handler for that message. On message
arrival, the computation on the node is interrupted and the handler is executed. The role of the

handler is to get the message out of the network, either by integrating it into the ongoing com-
putation or by replying, in the case of a remote request. The buffering and scheduling provided

in CMAM are extremely primitive and thereby fast. The only buffering is that involved in actual
transport and the only scheduling is that required to activate the handler. This is sufficient for
many applications. More general buffering and scheduling can be easily constructed in layers
above CMAM. This minimalist approach avoids paying a performance penalty for unneeded fun-
tionality. The power of Active Messages comes from the ability to customize message formatters
and handlers, and from the simplicity (hence efficiency) of the implementation. Currently a five
word CMAM packet can be sent in 1.4us and dispatched to an arbitrary C function on the
receiving end in 1.6us.

A few aspects of active messages and the current implementation on the CM-5 are worth
noting at the outset.

1
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* The role of message handlers is to service the network, i.e., to reply to requests or to store
the data of incoming messages into memory in a reasonable way. Message handlers are
not intended to perform computation as such, but are not prevented from doing some
reasonable amount of work. In this sense the active message model is fundamentally
different from message-driven models of computation (e.g., dataflow, concurrent smalltalk,
concurrent agregates, etc.). In some cases, it is cheaper to process the data on-the-fly than
to copy it to a buffer and handlers are often specialized in this way. It is generally best if
all storage required to handle a message is preallocated.

* The current CMAM implementation polls the network in order to accept messages and
execute the appropriate handlers. This is buried within the various CMAM operations, so it
is generally invisible. However, the CMAM_wait primitive, or an equivalent poll loop, should
be used for busy waiting. Using interrupts to receive messages is more natural to active
messages, but the costs on the CM-5 are rather steep. The interval between polls increases
the latency of remote requests which affects the prefetching distance or multithreading
required. Failure to service the network for long periods may cause messages to back-up
into the routers. It is anticipated that later versions will utilize interrupts.

* The size of message packets on the CM-5 is limited to five words. CMAM provides variable
length active messages as the primary interface, but also exposes an interface that reflects
this physical limit. The CM-5 network allows packets to be re-ordered along a point-to-
point connection, so there is some overhead to forming multipacket messages. CMAM
provides communication segments to facilitate bulk transfer and all-to-all personalized
communication. When a certain amount of data is deposited into the segment the handler
is activated.

* Deadlock avoidance is a key aspect of the design of the CMAM layer, but still needs
to be understood when constructing communication layers on CMAM, especially when
handlers reply to remote requests as in a shared memory model, for example. Networks are
usually "deadlock-free" as long as processors absorb messages. One-way communication is
straight-forward; the sender blocks if the network cannot accept packets, but continues to
receive and handle incoming packets. Two-way communication is trickier since handling
an incoming request involves sending a reply. Accepting requests while replies are blocked
is likely to lead to stack overflow. In general, requests and replies must have different
priority levels, so this distinction is explicit in the CMAM interface. On the CM-5 the
priorities are established by the usage of the two data networks; one is reserved for requests
and the other one for replies. The processor must always accept packets from the reply
network, but can stop listening to the request network while servicing a request, even if the
request blocks. (The implementation of active messages on other architectures achieves
this deadlock avoidance through other means.) For one-way communication either network
can be used and the CMAM interface provides calls to inject packets into either network.

The core of CMAM is in three parts. The message sending and reception primitives are
hand-coded in assembler. Header files contains ANSI-C function prototypes and GCC inline
functions to poll the network and to format simple requests. Several communication abstrac-
tions, including shared memory and traditional message passing, are provided as formatters and
handlers are written in C. As the examples below show, the CMAM user is permitted, even
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encouraged, to extend these with specialized format and handler functions which can be far

more effective than the standard ones.

The current header files assume that GCC is being used. Converting the prototypes and using

macros instead of inline functions is, in principle, possible. Note that there is no special compiler

for the CM-5, any Sun-4 compiler can be used. Only the linker is special and produces two

executables, one for the CN (control node, scalar, or front-end) and one for the PNs (processing

nodes).

In general, a communication operation built on top of CMAM includes a formatter and a

handler. Usually, the formatter is trivial and simply uses CMAM to call the handler function
on a remote processor. For two-way communications, the request handler will use CMAMreply

to call a function on the requesting processor. This is illustrated by example in the following

sections.

2 Hello world

This section describes a trivial program which pings all processors using CMAM and prints a

hello string. A minimal CMAM program consists of three files: the program running each of the
nodes, the program running on the host and a C-prototype file to link the two together. This
is identical to programs written using the CMMD message passing library and is described in

further detail in the "CMMD User's Guide".

2.1 Host program

Figure 1 shows the host code for our first program. When execution begins main is called on the

host (as in any standard C program) while all processing nodes (PNs) enter a dispatch loop. Main

first enables CMAM and the CMAM synchronization barrier and then calls do_pings on the PNs.
Do_pings really is a stub generated from the prototype file in Figure 2 and causes the dispatcher

on each PN to call CMPE_do_pings of the node program. The argument to dopings is the handler

to be called by PN 0 to return the total execution time. The call to do_pings is asynchronous, i.e.

the host program continues to execute without waiting for do_pings to complete. After starting

do_pings, the host program calls CMAM_wait to wait for the done flag. CMAM_wait(&flag, value)

busy-waits for the flag to reach value. While busy-waiting, it polls the network (otherwise

nothing would ever happen) and before returning, it resets flag by subtracting value. After

printing a "Hello World" with the timing information, main disables CMAM and terminates.

CMAM_disable waits for all PNs to return to the idle loop before disabling CMAM. The call to

exit not only terminates the host programs but also kills all PN programs.

Observe that CMAM operations work between the host and the nodes as they do between

nodes. However, there are some underlying differences. The nodes all have identical code address

spaces. Thus, the local address of a handler is also its remote address. This uniformity does not
hold for the host, since it has a completely different address space. This is why the host handler

address is passed as an argument to the node code. Secondly, the performance of node-to-host

operations is much worse than other operations because the node operating system is involved.

CMAM_barrier is enabled separately from the rest of CMAM because it changes the host

participation in global synchronization operations vis a vis CMMD. Under CMMD the host

participates, under CMAM it does not. Mixing CMMD and CMAM is somewhat subtle and
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Figure 1: Host program for the "Hello World" example. File pinghost. c.

discussed further in Section 6.

void dopings(void (*settime)());

Figure 2: Stub prototypes for the "Hello World" example. File ping.proto.

A prototype file, shown in Figure 2, connects the host call to the node routine, shown in
Figure 3. Note, however, that the routine called on the node must have a CMPE_ prefix, i.e.,
calling do_pings on the host goes through a stub and invokes CMPEdo_pings on all the nodes.
The node program shows the three parts of a two-way communication operation: ping, pong,
and poof. Ping uses the machine specific CMAM_4 call to invoke pong on destnode passing it
the requesting node number and the address of a flag on the requesting node. Then ping busy
waits on this flag. The CMAM call invokes the function specified by its second argument on
the node specified by its first argument with the remaining arguments as input. The CMNA
timer registers are used in the example to time this loop. These timers provide elasped time in
processor cycles (33MHz) including timesharing gaps.

The pong function is invoked by CMAM on the remote node with the return node and flag
address as arguments. It simply invokes poof on the requesting processor using CMAM_reply. The
reply version must be used within request handlers. Response handlers are not permitted to
send additional messages. poof simply increments the flag specified in its argument. This is
the flag that ping is busy waiting on, so ping will return from the CMAMwait call after poof is
invoked. The top level node routine exercises the ping-pong-poof from node zero to each of the
other nodes. It then delivers the aggregate time to the host. Meanwhile, all the other nodes

#include <stdio.h>
#include <cmam/cmam.h>

/* receive result from PNs */
static volatile int done = O; /* flag set when PN part finished */
static volatile double time = 0; /* time taken by PN part */
static void settime(double t) { time = t; done++; ) /* handler for PN 0 to call */

/* main program */
void main(int argc, char **argv)
{

CMAMenable(); /* enable CMAM */
CMAMenablebarrier(); /* enable barrier separately */

dopings(settime); /* run PN code */
CMAMwait(&done, 1); /* wait for PN code to complete */

fprintf(stderr, "Hello world from %d nodes. Pings took %.1fus each.\n",
CMAMpartitionsize, (time* 1E6)/CMAMpartitionsize);

CMAMdisable(); /* sync all PNs and disable CMAM */
exit(O);

}
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are waiting in the CMAMbarrier. Nodes continue to services requests while in the barrier. After

all nodes have execute the CMAM_barrier call, each is allowed to proceed. In this case, they all

complete and return to the dispatch loop, whereupon the program terminates.

Figure 3: Node program for the "Hello World" example. File ping. c.

The Makefile for the "Hello World" program is shown in Figure 4. The first two lines

define the location of the CMAM libraries and include files. This may vary depending on the

installation. CMAM requires the use of the GNU C compiler, preferably version 2.0 or later.
If you use GCC 2.xx, you must load the gcc library with both the host executable and the
node executable, and the C compiler flags must include -gstabs to allow pndbx (the CM-5 node
debugger) to read the debugging information generated by GCC. The additional -Dpe_obj and
-DPE_CODE flags are required for compiling the node program. The last rule in the makefile

converts the prototype in ping.proto into a stub to be loaded with the host program.

#include <cmam/cmam.h>

#include <cm/timers.h> /* access to hardware timer */
static double time(int t) /* turn tick into seconds */
{ CMTIME ct = {0, t; return CMnitimeinsec(ct); }

void CMPEdopings(void (*settime)())
{

int me, dest;
double time;
static double ping(int destnode);

me = CMNA-selfLaddress;

if(me == O) {
time = 0.0;
for(dest=CMNApartition size-1; dest>0; dest--) {

time += ping(dest);
}
CMAMhost_4(set_time, time);

CMAM-barrier(O);

static void poof(volatile int *flag) { (*flag)++; }

static void pong(int returnnode, volatile int *returnflag)
{ CMAMreply_4(returnnode, poof, returnflag); }

static double ping(int destnode)
{

int t;
volatile int done = 0;

t = *(volatile int *)timereg;
CMAM_4(dest node, pong, CMNA-self-address, &done);
CMAMwait(&done, 1);
t = *(volatile int *)timereg - t;
return time(t);

}
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Figure 4: Makefile for the "Hello World" example. File Makefile.

CMAMLIB=/usr/cm5/local/lib
CMAMINC=/usr/cm5/local/include/cmam

CC=gcc-2
CFLAGS=-gstabs -02 -I/usr/cm5/include -I$(CMAMINC) -DCM5
PNFLAGS=$(CFLAGS) -Dpeobj -DPECODE
GCC2LIB=/usr/local/lib/gcc-lib/libgcc.a

CPLIBS=-L$(CMAMLIB) -lcmam -lcmnasp -lm $(GCC2LIB)
PNLIBS=-L$(CMAMLIB) -lcmampe -lcmnape -lm $(GCC2LIB)

PGMCP=pinghost.o pingproto.o
PGMPN=ping.o

ping: $(PGMCP) $(PGMPN)
cmld -o ping $(PGMCP) $(CPLIBS) -pe $(PGMPN) $(PNLIBS)

.C.O:

$(CC) $(PNFLAGS) -c $*.c

pinghost.o: ping-host.c
$(CC) $(CFLAGS)-c $*.c

ping.o: ping.c

pingproto.o: ping.proto
sp-pe-stubs <ping.proto >pingproto.c
$(CC) $(CFLAGS) -c pingproto.c
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3 Shared Memory

This section shows how shared memory primitives can be built on CMAMThis is essentially
like the ping-pong example in the previous section. The implementation of global read and
write function is shown in Figure 5. A counter sm_flag is used to keep track of the number of
outstanding shared memory operations. For a simple shared memory model this will be one or
zero. The release routine waits until all previous shared memory operations have completed,

i.e., until the counter reaches zero. Observe that it calls CMAM_poll to ensure that incoming

messages are received and handled.
The read operation has three parts. read_i waits for previous requests to complete and then

sends an Active Messageto read the desired location on the remote processor. The counter is
incremented to reflect that a request is outstanding. The handler reads the location and replies
to the originating processor. The response handler deposits data in a buffer and decrements the
counter, so the original read_i observes the completion and can return the data.

The write operation similarily has three parts in order to provide sequential consistency.
The request contains the address and the data. The handler deposits the data in the desired
location on the remote node and replies with an acknowedgement. The write_i does not wait
for the acknowledgement, but it does wait to ensure that all previous acknowledgements have
been received before initating the write. Thus, there can be at most one outstanding write and
the writes from each processor occur in the order that they are issued.

We have elected to wrap a function call around the increment of the outstanding counter
to highlight the issue of atomicity between the main computation and the handlers. Handlers
execute atomically with respect to other handlers, but may interupt computation. Thus, updates
to shared variables at the computation level should be protected relative to handlers. Since the
current version of CMAM uses polling, this concern does not arise. However, it is anticipated
that interupts will be enabled in the future.

Figure 6 shows a weaker set of shared memory primitives based on the release consistency
model. writeiw initates the write without waiting for previous writes to complete. release can
be used directly to ensure that all previous writes have completed, or write_i will implicitly
perform a release.

The two phases of read_i have been split apart in prefetch_i and accept_i so that global
reads can be overlapped with computation. Notice that the previous shared memory primitives
can be mixed freely with the weaker forms, except that no reads can occur between a prefetch
and an accept. This restriction could be eliminated by providing separate buffers or, better yet,
providing the buffer address as an argument to the prefetch. This idea is carried forward more
thoroughly in the distributed memory model discussed in the next section.
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/* Implementation of shared memory operations on CMAM */

volatile int smflag = 0;
volatile int readbuf;
inline void release() {while (smfiag 0) CMAMpoll();}
inline void outstanding() {smflag++; };

/* Read INT from a global address: <proc,addr> */
void readiresphandler(int data)
{

readbuf = data;
smilag--;

}

void readihandler(int retnode, int *localaddr)
I

CMAMreply_4(retnode, readiresphandler, *localaddr);

inline int readi(int node, int *addr)
{

release();
outstanding();
CMAM_4(node, readihandler, CMAM_selfaddress, addr);
release();
return(intbuf);

/* Write INT to a global address: <proc,addr> */

void writeacklhandler() smflag--; 

void writei-handler(int retnode, int *local_addr, int datal)
{

*localaddr = datal;
CMAMreply_4(retnode, writeackhandler);

}

inline void writei(int node, int *addr, int data)
{

release();
smflag++;
CMAM_4(node, writeihandler, CMAMselfaddress, addr, data);

I

Figure 5: Shared Memory Implmentation. File shared-mem. c.
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/* Weaker forms of write and read overlap of communication and computation */

inline void write-iw(int node, int *addr, int data)
{

smflag++;
CMAM_4(node, writeihandler, CMAMselLaddress, addr, data);

I

inline int prefetchi(int node, int *addr)
{

release();
smflag++;
CMAM_4(node, readihandler,

}

CMAMself-address, addr);

inline int accepti(int node, int *addr)
{

release();
return(intbuf);

}

Figure 6: Weak shared memory operations. File weak-mem. c.

I DRAFT 9
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4 Distributed Memory

This section describes a novel communication paradigm that falls somewhere between shared
memory and message passing. It retains the global address space of shared memory, but exposes
the split-phase nature of accessing data across a network. In addition, bulk transfer operations
are provided. The idea basically is to allow the program to initate tranfers and test explicitly
for their completion. Get generalizes read and put generalizes write. For integers, these are
implemented as in Figure 7. This is part of the shared memory utility provided with the
CMAM release as CMAM_shmem.h.

Note that the put handler is the same as the get response handler. The blocked version of
get illustrates the use of communication segments to support bulk communication.

Figure 8 shows how the put operation can be used in supporting all-to-all personalized
communication. The program is a generalization of a matrix transpose operation and forms of
a key step in many fast parallel algorithms. The idea is that the layout of an array is specified
by a mapping function from indexes to < processor, offset > pairs and the inverse. An array
is provided under one layout and a new array is required under a different layout. In this
case, mapping function A specifies a cyclic mapping and mapping function B specifies a blocked
mapping. Each processor simply puts each datum where it goes. It is complete when all the
data it requires has been put to it by others. There is no need to retaining consistency of write
ordering within the xpose, no need for acknowledgments, and no barrier.

An alternative way of writing this routine would be to open a specific communication seg-
ment on all processors using CMAMopen_this_segment. The puts are then replaced by CMAMxfer
operations which can pack more data in a network packet, since the offset is relative to the base
of the communication segment and no handler address field is needed. By organizing the remap
to operate on quad words the full network bandwidth can be utilized.



July 3, 1992 - 15:25 DRAFT 11

/* Get data from remote processor and increment local flag */
inline void CMAMget-i(int node, int *remoteaddr, int *local_addr, volatile int *flag)
{

extern void CMAMgetihandler();
CMAM_4(node, CMAMgetihandler,

CMNAselfaddress, remoteaddr, local addr, flag);
}

/* Get block of data from remote processor and increment local flag */
inline void CMAMgetN(int node, void *addr, int count, void *localaddr,volatile int *flag)

extern void CMAMgetNhandler();
extern int CMAMgetNend();
CMAM_4(node, CMAMgetNhandler, CMNAselfLaddress, addr, count,

CMAMopensegment(localaddr, count, CMAMgetNend, (void *)flag));

/* Put data to remote processor and increment flag there */
inline void CMAMputi(int node, int *addr, int data, volatile int *flag)

extern void CMAMputihandler();
CMAM_4(node, CMAMputihandler, addr, data, flag);

void CMAMputi-handler(int *addr, int data, int *flag)
{

addr[O] = data; (*flag)++;

void CMAMgetihandler(int retnode, int *addr, int *ret addr, int *flag)
{

CMAMreply_4(retnode, CMAMputihandler, retaddr, *addr, flag);
I

void CMAMgetNhandler(int node, void *addr, int count, int segaddr)
{

CMAM-replyxfer(node, segaddr, addr, count);

int CMAMgetNend(volatile int *flag, void *localaddr)
{

(*flag)++; return 0;

Figure 7: Distributed Memory Implmentation. File dist-mem. c.
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/* xpose.c - Generalized Transpose
*
* The layout of an array is specified by a pair of decode functions which
* map the logical index (i) to a processor (p) and a processor local
* offset (o). The reverse mapping from (p,o) to i is given by an encode
* function.
*
* Given two arrays specifed by arbitrary layout functions, move one array
* into the other.
*
* Algorithm: scan through local elements, starting from a random offset,
* and put them where they belong. Stop when have received a full set of puts.

*/

#include <cmam/cmam. h>

#define SIZE (1024) /* hard coded array size for now */

/* A Layout: wrap indexes around the processors. */
static double A[SIZE];
#define decodeap(i) ((int) (i % numprocs))
#define decodeao(i) ((int) (i / numprocs))
#define encodea(p,o) ((int) (o * numprocs + p))

/* B Layout: block indexes onto processors. */
static double B[SIZE];
#define decodebp(i) ((int) (i / SIZE))
#define decodebo(i) ((int) (i % SIZE))
#define encodeb(p,o) ((int) (p * SIZE + o))

void CMPExpose(void)
{

int me, numprocs, a, aO, r;
static int count = 0;

me = CMNAselfaddress;
numprocs = CMNApartition-size;
srandom(me);

a = aO = random()%SIZE;
do {

int vi = encodea(me,a);
CMAMputd(decodebp(vi), B+decodebo(vi), A[a], &count);
a++; if(a == SIZE) a = 0;

} while(a # aO);
CMAMwait(&count, SIZE);

}

Figure 8: Node program for the generalized array transpose example.
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5 Send and Receive

For those wedded to send&receive, here's a first-cut implementation: it only supports blocking

send&receive (i.e. SEND blocks until the corresponding RECEIVE is executed, and vice-versa)

and it only supports receiving from a specific node (i.e. cannot RECEIVE from "any node").

This implementation uses a standard three-way handshake: the sender sends a request to

the receiver, which replies by acknowledgement when ready, and finally the sender transfers

the data. The protocol state is maintained by the receiver in a per-processor table. CMAMsend
sends a request Active Message to the receiver and, depending on whether the corresponding

CMAMreceive has been executed, the request handler either enters the request into the state

table or directly replies with the acknowledgement. In the meantime, CMAMsend waits for the

acknowledgement before sending the data itself. Similarly, CMAM_receive checks the state table

and, if the corresponding request has been received, sends the acknowledgement.

/* State of pending sends and receives */
#define MAXPROC 1024
static int state[MAXPROC];
#define IDLE -1
#define SENDPEND(state) ((state) > 0)
#define RECVPEND -2

/* State of current SEND */
static volatile int sendseg = -1;
static volatile int sendcount = 0;

/* max num of processors */
/* state */

/* processor idle */
/* he's waiting to send <state> bytes */

/* we're waiting for him to send */

/* segment to send to */
/* agreed message length */

/* State of current RECEIVE */
static volatile int recvflag = 0; /* receive-complete flag */
static int recvdone(void *info, void *base) { recvfiag++; return 0; }
static int recvfrom = 0; /* source processor */
static int recvcount = 0; /* length */
static int recvseg = 0; /* segment */

/* CMAMsend - SEND to remote node */
void CMAMsend(int node, void *buff, int bytecount)
{

/* send request to remote node - wait for ack - send data */
sendseg = -1; / no segment yet */
CMAM_4(node, sendhandler, CMAMself_address, count); /* send REQ */
while(sendseg == -1) CMAMpoll(); /* wait to get ACK */
CMAMxfer(node, sendseg, buff, send count); /* send data */

}

Figure 9: Implementation of blocking send&receive (part 1).
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/* Handle a send request */
static void sendhandler(int requestingnode, int sendcount)

if(RECVPEND(state[requestingnode])) { /* is receiver ready? */
recvfrom = requestingnode;
/* message length is MIN(send count, recvcount) */
if(sendcount < recvcount) {

CMAMshortensegment(recvseg, recvcount-sendcount);
recvcount = sendcount;

/* send ACK */
CMAMreply_4(requesting-node, sendsetseg, recvseg, recvcount);
state[requestingnode] = IDLE; /* ready for next */

} else {

state[requestingnode] = sendcount; /* .. not ready, record request */

/* Handle send acknowledgement */
static void sendsetseg(int seg, int count)
{

sendcount = count; sendseg = seg;
}

/* CMAMrecv - RECEIVE from remote node */
void CMAMrecv(int node, void *buff, int count)
{

/* allocate a segment */
recvcount = count;
recvseg = CMAMopensegment(buff, count, recv done, 0);
if(recvseg == -1) CMPNpanic("no segment left");
if(SENDPEND(state[node])) {

/* sender is already there */
recvfrom = node;
/* message length is MIN(send count, recvcount) */
if(state[node] < count) {

CMAMshortensegment(recvseg, count-state[node]);
recvcount = state[node];

/* send ACK */
CMAMreply_4(node, sendsetseg, recvseg, recvcount);
state[node] = IDLE; /* ready for next */

} else {

state[node] = RECVPEND;

/* wait for completion of receive */
CMAMwait(&recvflag, 1);

}

Figure 10: Implementation of blocking send&receive (part 2).
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6 Mixing CMAM and CMMD

While not recommended, it is possible to mix both CMAM and CMMD in the same program

with some care:

* CMAM and CMMD node-node communication cannot occur a the same time: CMAM

cannot deal with the arrival of a CMMD packet and vice-versa. It is possible to use either

one in well separated phases of the program though.

* The CMMD operations using the CM-5 control network are compatible with CMAM

except for CMAMbarrier. Enabling the barrier changes the "host participation" in control

network operations and interferes with CMMDs use of the control network.

A Manual Pages


